import logging import numpy as np import tensorflow as tf from mlagents.trainers.models import LearningModel logger = logging.getLogger("mlagents.trainers") class PPOModel(LearningModel): def __init__( self, brain, lr=1e-4, h_size=128, epsilon=0.2, beta=1e-3, max_step=5e6, normalize=False, use_recurrent=False, num_layers=2, m_size=None, seed=0, stream_names=None, ): """ Takes a Unity environment and model-specific hyper-parameters and returns the appropriate PPO agent model for the environment. :param brain: BrainInfo used to generate specific network graph. :param lr: Learning rate. :param h_size: Size of hidden layers :param epsilon: Value for policy-divergence threshold. :param beta: Strength of entropy regularization. :param max_step: Total number of training steps. :param normalize: Whether to normalize vector observation input. :param use_recurrent: Whether to use an LSTM layer in the network. :param num_layers Number of hidden layers between encoded input and policy & value layers :param m_size: Size of brain memory. :param seed: Seed to use for initialization of model. :param stream_names: List of names of value streams. Usually, a list of the Reward Signals being used. :return: a sub-class of PPOAgent tailored to the environment. """ LearningModel.__init__( self, m_size, normalize, use_recurrent, brain, seed, stream_names ) if num_layers < 1: num_layers = 1 if brain.vector_action_space_type == "continuous": self.create_cc_actor_critic(h_size, num_layers) self.entropy = tf.ones_like(tf.reshape(self.value, [-1])) * self.entropy else: self.create_dc_actor_critic(h_size, num_layers) self.create_losses( self.log_probs, self.old_log_probs, self.value_heads, self.entropy, beta, epsilon, lr, max_step, ) def create_losses( self, probs, old_probs, value_heads, entropy, beta, epsilon, lr, max_step ): """ Creates training-specific Tensorflow ops for PPO models. :param probs: Current policy probabilities :param old_probs: Past policy probabilities :param value_heads: Value estimate tensors from each value stream :param beta: Entropy regularization strength :param entropy: Current policy entropy :param epsilon: Value for policy-divergence threshold :param lr: Learning rate :param max_step: Total number of training steps. """ self.returns_holders = {} self.old_values = {} for name in value_heads.keys(): returns_holder = tf.placeholder( shape=[None], dtype=tf.float32, name="{}_returns".format(name) ) old_value = tf.placeholder( shape=[None], dtype=tf.float32, name="{}_value_estimate".format(name) ) self.returns_holders[name] = returns_holder self.old_values[name] = old_value self.advantage = tf.placeholder( shape=[None, 1], dtype=tf.float32, name="advantages" ) self.learning_rate = tf.train.polynomial_decay( lr, self.global_step, max_step, 1e-10, power=1.0 ) decay_epsilon = tf.train.polynomial_decay( epsilon, self.global_step, max_step, 0.1, power=1.0 ) decay_beta = tf.train.polynomial_decay( beta, self.global_step, max_step, 1e-5, power=1.0 ) value_losses = [] for name, head in value_heads.items(): clipped_value_estimate = self.old_values[name] + tf.clip_by_value( tf.reduce_sum(head, axis=1) - self.old_values[name], -decay_epsilon, decay_epsilon, ) v_opt_a = tf.squared_difference( self.returns_holders[name], tf.reduce_sum(head, axis=1) ) v_opt_b = tf.squared_difference( self.returns_holders[name], clipped_value_estimate ) value_loss = tf.reduce_mean( tf.dynamic_partition(tf.maximum(v_opt_a, v_opt_b), self.mask, 2)[1] ) value_losses.append(value_loss) self.value_loss = tf.reduce_mean(value_losses) r_theta = tf.exp(probs - old_probs) p_opt_a = r_theta * self.advantage p_opt_b = ( tf.clip_by_value(r_theta, 1.0 - decay_epsilon, 1.0 + decay_epsilon) * self.advantage ) self.policy_loss = -tf.reduce_mean( tf.dynamic_partition(tf.minimum(p_opt_a, p_opt_b), self.mask, 2)[1] ) self.loss = ( self.policy_loss + 0.5 * self.value_loss - decay_beta * tf.reduce_mean(tf.dynamic_partition(entropy, self.mask, 2)[1]) ) def create_ppo_optimizer(self): optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) self.update_batch = optimizer.minimize(self.loss)