import logging from typing import Dict, NamedTuple, List, Any, Optional, Callable, Set import cloudpickle from mlagents_envs.environment import UnityEnvironment from mlagents_envs.exception import UnityCommunicationException, UnityTimeOutException from multiprocessing import Process, Pipe, Queue from multiprocessing.connection import Connection from queue import Empty as EmptyQueueException from mlagents_envs.base_env import BaseEnv, AgentGroup from mlagents.trainers.env_manager import EnvManager, EnvironmentStep, AllStepResult from mlagents_envs.timers import ( TimerNode, timed, hierarchical_timer, reset_timers, get_timer_root, ) from mlagents.trainers.brain import BrainParameters from mlagents.trainers.action_info import ActionInfo from mlagents_envs.side_channel.float_properties_channel import FloatPropertiesChannel from mlagents_envs.side_channel.engine_configuration_channel import ( EngineConfigurationChannel, EngineConfig, ) from mlagents_envs.side_channel.side_channel import SideChannel from mlagents.trainers.brain_conversion_utils import group_spec_to_brain_parameters logger = logging.getLogger("mlagents.trainers") class EnvironmentCommand(NamedTuple): name: str payload: Any = None class EnvironmentResponse(NamedTuple): name: str worker_id: int payload: Any class StepResponse(NamedTuple): all_step_result: AllStepResult timer_root: Optional[TimerNode] class UnityEnvWorker: def __init__(self, process: Process, worker_id: int, conn: Connection): self.process = process self.worker_id = worker_id self.conn = conn self.previous_step: EnvironmentStep = EnvironmentStep.empty(worker_id) self.previous_all_action_info: Dict[str, ActionInfo] = {} self.waiting = False def send(self, name: str, payload: Any = None) -> None: try: cmd = EnvironmentCommand(name, payload) self.conn.send(cmd) except (BrokenPipeError, EOFError): raise UnityCommunicationException("UnityEnvironment worker: send failed.") def recv(self) -> EnvironmentResponse: try: response: EnvironmentResponse = self.conn.recv() return response except (BrokenPipeError, EOFError): raise UnityCommunicationException("UnityEnvironment worker: recv failed.") def close(self): try: self.conn.send(EnvironmentCommand("close")) except (BrokenPipeError, EOFError): logger.debug( f"UnityEnvWorker {self.worker_id} got exception trying to close." ) pass logger.debug(f"UnityEnvWorker {self.worker_id} joining process.") self.process.join() def worker( parent_conn: Connection, step_queue: Queue, pickled_env_factory: str, worker_id: int, engine_configuration: EngineConfig, ) -> None: env_factory: Callable[ [int, List[SideChannel]], UnityEnvironment ] = cloudpickle.loads(pickled_env_factory) shared_float_properties = FloatPropertiesChannel() engine_configuration_channel = EngineConfigurationChannel() engine_configuration_channel.set_configuration(engine_configuration) env: BaseEnv = env_factory( worker_id, [shared_float_properties, engine_configuration_channel] ) def _send_response(cmd_name, payload): parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload)) def _generate_all_results() -> AllStepResult: all_step_result: AllStepResult = {} for brain_name in env.get_agent_groups(): all_step_result[brain_name] = env.get_step_result(brain_name) return all_step_result def external_brains(): result = {} for brain_name in env.get_agent_groups(): result[brain_name] = group_spec_to_brain_parameters( brain_name, env.get_agent_group_spec(brain_name) ) return result try: while True: cmd: EnvironmentCommand = parent_conn.recv() if cmd.name == "step": all_action_info = cmd.payload for brain_name, action_info in all_action_info.items(): if len(action_info.action) != 0: env.set_actions(brain_name, action_info.action) env.step() all_step_result = _generate_all_results() # The timers in this process are independent from all the processes and the "main" process # So after we send back the root timer, we can safely clear them. # Note that we could randomly return timers a fraction of the time if we wanted to reduce # the data transferred. # TODO get gauges from the workers and merge them in the main process too. step_response = StepResponse(all_step_result, get_timer_root()) step_queue.put(EnvironmentResponse("step", worker_id, step_response)) reset_timers() elif cmd.name == "external_brains": _send_response("external_brains", external_brains()) elif cmd.name == "get_properties": reset_params = shared_float_properties.get_property_dict_copy() _send_response("get_properties", reset_params) elif cmd.name == "reset": for k, v in cmd.payload.items(): shared_float_properties.set_property(k, v) env.reset() all_step_result = _generate_all_results() _send_response("reset", all_step_result) elif cmd.name == "close": break except (KeyboardInterrupt, UnityCommunicationException, UnityTimeOutException): logger.info(f"UnityEnvironment worker {worker_id}: environment stopping.") step_queue.put(EnvironmentResponse("env_close", worker_id, None)) finally: # If this worker has put an item in the step queue that hasn't been processed by the EnvManager, the process # will hang until the item is processed. We avoid this behavior by using Queue.cancel_join_thread() # See https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue.cancel_join_thread for # more info. logger.debug(f"UnityEnvironment worker {worker_id} closing.") step_queue.cancel_join_thread() step_queue.close() env.close() logger.debug(f"UnityEnvironment worker {worker_id} done.") class SubprocessEnvManager(EnvManager): def __init__( self, env_factory: Callable[[int, List[SideChannel]], BaseEnv], engine_configuration: EngineConfig, n_env: int = 1, ): super().__init__() self.env_workers: List[UnityEnvWorker] = [] self.step_queue: Queue = Queue() for worker_idx in range(n_env): self.env_workers.append( self.create_worker( worker_idx, self.step_queue, env_factory, engine_configuration ) ) @staticmethod def create_worker( worker_id: int, step_queue: Queue, env_factory: Callable[[int, List[SideChannel]], BaseEnv], engine_configuration: EngineConfig, ) -> UnityEnvWorker: parent_conn, child_conn = Pipe() # Need to use cloudpickle for the env factory function since function objects aren't picklable # on Windows as of Python 3.6. pickled_env_factory = cloudpickle.dumps(env_factory) child_process = Process( target=worker, args=( child_conn, step_queue, pickled_env_factory, worker_id, engine_configuration, ), ) child_process.start() return UnityEnvWorker(child_process, worker_id, parent_conn) def _queue_steps(self) -> None: for env_worker in self.env_workers: if not env_worker.waiting: env_action_info = self._take_step(env_worker.previous_step) env_worker.previous_all_action_info = env_action_info env_worker.send("step", env_action_info) env_worker.waiting = True def _step(self) -> List[EnvironmentStep]: # Queue steps for any workers which aren't in the "waiting" state. self._queue_steps() worker_steps: List[EnvironmentResponse] = [] step_workers: Set[int] = set() # Poll the step queue for completed steps from environment workers until we retrieve # 1 or more, which we will then return as StepInfos while len(worker_steps) < 1: try: while True: step = self.step_queue.get_nowait() if step.name == "env_close": raise UnityCommunicationException( "At least one of the environments has closed." ) self.env_workers[step.worker_id].waiting = False if step.worker_id not in step_workers: worker_steps.append(step) step_workers.add(step.worker_id) except EmptyQueueException: pass step_infos = self._postprocess_steps(worker_steps) return step_infos def _reset_env(self, config: Optional[Dict] = None) -> List[EnvironmentStep]: while any(ew.waiting for ew in self.env_workers): if not self.step_queue.empty(): step = self.step_queue.get_nowait() self.env_workers[step.worker_id].waiting = False # First enqueue reset commands for all workers so that they reset in parallel for ew in self.env_workers: ew.send("reset", config) # Next (synchronously) collect the reset observations from each worker in sequence for ew in self.env_workers: ew.previous_step = EnvironmentStep(ew.recv().payload, ew.worker_id, {}) return list(map(lambda ew: ew.previous_step, self.env_workers)) @property def external_brains(self) -> Dict[AgentGroup, BrainParameters]: self.env_workers[0].send("external_brains") return self.env_workers[0].recv().payload @property def get_properties(self) -> Dict[AgentGroup, float]: self.env_workers[0].send("get_properties") return self.env_workers[0].recv().payload def close(self) -> None: logger.debug(f"SubprocessEnvManager closing.") self.step_queue.close() self.step_queue.join_thread() for env_worker in self.env_workers: env_worker.close() def _postprocess_steps( self, env_steps: List[EnvironmentResponse] ) -> List[EnvironmentStep]: step_infos = [] timer_nodes = [] for step in env_steps: payload: StepResponse = step.payload env_worker = self.env_workers[step.worker_id] new_step = EnvironmentStep( payload.all_step_result, step.worker_id, env_worker.previous_all_action_info, ) step_infos.append(new_step) env_worker.previous_step = new_step if payload.timer_root: timer_nodes.append(payload.timer_root) if timer_nodes: with hierarchical_timer("workers") as main_timer_node: for worker_timer_node in timer_nodes: main_timer_node.merge( worker_timer_node, root_name="worker_root", is_parallel=True ) return step_infos @timed def _take_step(self, last_step: EnvironmentStep) -> Dict[AgentGroup, ActionInfo]: all_action_info: Dict[str, ActionInfo] = {} for brain_name, batch_step_result in last_step.current_all_step_result.items(): if brain_name in self.policies: all_action_info[brain_name] = self.policies[brain_name].get_action( batch_step_result, last_step.worker_id ) return all_action_info