import unittest.mock as mock import pytest import numpy as np from mlagents.tf_utils import tf import yaml from mlagents.trainers.ppo.models import PPOModel from mlagents.trainers.ppo.trainer import PPOTrainer, discount_rewards from mlagents.trainers.ppo.policy import PPOPolicy from mlagents.trainers.rl_trainer import AllRewardsOutput from mlagents.trainers.components.reward_signals import RewardSignalResult from mlagents.envs.brain import BrainParameters from mlagents.envs.environment import UnityEnvironment from mlagents.envs.mock_communicator import MockCommunicator from mlagents.trainers.tests import mock_brain as mb from mlagents.trainers.tests.mock_brain import make_brain_parameters @pytest.fixture def dummy_config(): return yaml.safe_load( """ trainer: ppo batch_size: 32 beta: 5.0e-3 buffer_size: 512 epsilon: 0.2 hidden_units: 128 lambd: 0.95 learning_rate: 3.0e-4 max_steps: 5.0e4 normalize: true num_epoch: 5 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 1000 use_recurrent: false memory_size: 8 curiosity_strength: 0.0 curiosity_enc_size: 1 summary_path: test model_path: test reward_signals: extrinsic: strength: 1.0 gamma: 0.99 """ ) VECTOR_ACTION_SPACE = [2] VECTOR_OBS_SPACE = 8 DISCRETE_ACTION_SPACE = [3, 3, 3, 2] BUFFER_INIT_SAMPLES = 32 NUM_AGENTS = 12 @mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher") @mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator") def test_ppo_policy_evaluate(mock_communicator, mock_launcher, dummy_config): tf.reset_default_graph() mock_communicator.return_value = MockCommunicator( discrete_action=False, visual_inputs=0 ) env = UnityEnvironment(" ") brain_infos = env.reset() brain_info = brain_infos[env.external_brain_names[0]] trainer_parameters = dummy_config model_path = env.external_brain_names[0] trainer_parameters["model_path"] = model_path trainer_parameters["keep_checkpoints"] = 3 policy = PPOPolicy( 0, env.brains[env.external_brain_names[0]], trainer_parameters, False, False ) run_out = policy.evaluate(brain_info) assert run_out["action"].shape == (3, 2) env.close() @mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher") @mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator") def test_ppo_get_value_estimates(mock_communicator, mock_launcher, dummy_config): tf.reset_default_graph() mock_communicator.return_value = MockCommunicator( discrete_action=False, visual_inputs=0 ) env = UnityEnvironment(" ") brain_infos = env.reset() brain_info = brain_infos[env.external_brain_names[0]] trainer_parameters = dummy_config model_path = env.external_brain_names[0] trainer_parameters["model_path"] = model_path trainer_parameters["keep_checkpoints"] = 3 policy = PPOPolicy( 0, env.brains[env.external_brain_names[0]], trainer_parameters, False, False ) run_out = policy.get_value_estimates(brain_info, 0, done=False) for key, val in run_out.items(): assert type(key) is str assert type(val) is float run_out = policy.get_value_estimates(brain_info, 0, done=True) for key, val in run_out.items(): assert type(key) is str assert val == 0.0 # Check if we ignore terminal states properly policy.reward_signals["extrinsic"].use_terminal_states = False run_out = policy.get_value_estimates(brain_info, 0, done=True) for key, val in run_out.items(): assert type(key) is str assert val != 0.0 env.close() def test_ppo_model_cc_vector(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): model = PPOModel( make_brain_parameters(discrete_action=False, visual_inputs=0) ) init = tf.global_variables_initializer() sess.run(init) run_list = [ model.output, model.log_probs, model.value, model.entropy, model.learning_rate, ] feed_dict = { model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.epsilon: np.array([[0, 1], [2, 3]]), } sess.run(run_list, feed_dict=feed_dict) def test_ppo_model_cc_visual(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): model = PPOModel( make_brain_parameters(discrete_action=False, visual_inputs=2) ) init = tf.global_variables_initializer() sess.run(init) run_list = [ model.output, model.log_probs, model.value, model.entropy, model.learning_rate, ] feed_dict = { model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.visual_in[0]: np.ones([2, 40, 30, 3], dtype=np.float32), model.visual_in[1]: np.ones([2, 40, 30, 3], dtype=np.float32), model.epsilon: np.array([[0, 1], [2, 3]], dtype=np.float32), } sess.run(run_list, feed_dict=feed_dict) def test_ppo_model_dc_visual(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): model = PPOModel( make_brain_parameters(discrete_action=True, visual_inputs=2) ) init = tf.global_variables_initializer() sess.run(init) run_list = [ model.output, model.all_log_probs, model.value, model.entropy, model.learning_rate, ] feed_dict = { model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.visual_in[0]: np.ones([2, 40, 30, 3], dtype=np.float32), model.visual_in[1]: np.ones([2, 40, 30, 3], dtype=np.float32), model.action_masks: np.ones([2, 2], dtype=np.float32), } sess.run(run_list, feed_dict=feed_dict) def test_ppo_model_dc_vector(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): model = PPOModel( make_brain_parameters(discrete_action=True, visual_inputs=0) ) init = tf.global_variables_initializer() sess.run(init) run_list = [ model.output, model.all_log_probs, model.value, model.entropy, model.learning_rate, ] feed_dict = { model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.action_masks: np.ones([2, 2], dtype=np.float32), } sess.run(run_list, feed_dict=feed_dict) def test_ppo_model_dc_vector_rnn(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): memory_size = 128 model = PPOModel( make_brain_parameters(discrete_action=True, visual_inputs=0), use_recurrent=True, m_size=memory_size, ) init = tf.global_variables_initializer() sess.run(init) run_list = [ model.output, model.all_log_probs, model.value, model.entropy, model.learning_rate, model.memory_out, ] feed_dict = { model.batch_size: 1, model.sequence_length: 2, model.prev_action: [[0], [0]], model.memory_in: np.zeros((1, memory_size), dtype=np.float32), model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.action_masks: np.ones([1, 2], dtype=np.float32), } sess.run(run_list, feed_dict=feed_dict) def test_ppo_model_cc_vector_rnn(): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): memory_size = 128 model = PPOModel( make_brain_parameters(discrete_action=False, visual_inputs=0), use_recurrent=True, m_size=memory_size, ) init = tf.global_variables_initializer() sess.run(init) run_list = [ model.output, model.all_log_probs, model.value, model.entropy, model.learning_rate, model.memory_out, ] feed_dict = { model.batch_size: 1, model.sequence_length: 2, model.memory_in: np.zeros((1, memory_size), dtype=np.float32), model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.epsilon: np.array([[0, 1]]), } sess.run(run_list, feed_dict=feed_dict) def test_rl_functions(): rewards = np.array([0.0, 0.0, 0.0, 1.0], dtype=np.float32) gamma = 0.9 returns = discount_rewards(rewards, gamma, 0.0) np.testing.assert_array_almost_equal( returns, np.array([0.729, 0.81, 0.9, 1.0], dtype=np.float32) ) def test_trainer_increment_step(dummy_config): trainer_params = dummy_config brain_params = BrainParameters( brain_name="test_brain", vector_observation_space_size=1, camera_resolutions=[], vector_action_space_size=[2], vector_action_descriptions=[], vector_action_space_type=0, ) trainer = PPOTrainer(brain_params, 0, trainer_params, True, False, 0, "0", False) policy_mock = mock.Mock() step_count = 10 policy_mock.increment_step = mock.Mock(return_value=step_count) trainer.policy = policy_mock trainer.increment_step(5) policy_mock.increment_step.assert_called_with(5) assert trainer.step == 10 @mock.patch("mlagents.envs.environment.UnityEnvironment") @pytest.mark.parametrize("use_discrete", [True, False]) def test_trainer_update_policy(mock_env, dummy_config, use_discrete): env, mock_brain, _ = mb.setup_mock_env_and_brains( mock_env, use_discrete, False, num_agents=NUM_AGENTS, vector_action_space=VECTOR_ACTION_SPACE, vector_obs_space=VECTOR_OBS_SPACE, discrete_action_space=DISCRETE_ACTION_SPACE, ) trainer_params = dummy_config trainer_params["use_recurrent"] = True # Test curiosity reward signal trainer_params["reward_signals"]["curiosity"] = {} trainer_params["reward_signals"]["curiosity"]["strength"] = 1.0 trainer_params["reward_signals"]["curiosity"]["gamma"] = 0.99 trainer_params["reward_signals"]["curiosity"]["encoding_size"] = 128 trainer = PPOTrainer(mock_brain, 0, trainer_params, True, False, 0, "0", False) # Test update with sequence length smaller than batch size buffer = mb.simulate_rollout(env, trainer.policy, BUFFER_INIT_SAMPLES) # Mock out reward signal eval buffer["extrinsic_rewards"] = buffer["rewards"] buffer["extrinsic_returns"] = buffer["rewards"] buffer["extrinsic_value_estimates"] = buffer["rewards"] buffer["curiosity_rewards"] = buffer["rewards"] buffer["curiosity_returns"] = buffer["rewards"] buffer["curiosity_value_estimates"] = buffer["rewards"] trainer.update_buffer = buffer trainer.update_policy() # Make batch length a larger multiple of sequence length trainer.trainer_parameters["batch_size"] = 128 trainer.update_policy() # Make batch length a larger non-multiple of sequence length trainer.trainer_parameters["batch_size"] = 100 trainer.update_policy() def test_add_rewards_output(dummy_config): brain_params = BrainParameters( brain_name="test_brain", vector_observation_space_size=1, camera_resolutions=[], vector_action_space_size=[2], vector_action_descriptions=[], vector_action_space_type=0, ) dummy_config["summary_path"] = "./summaries/test_trainer_summary" dummy_config["model_path"] = "./models/test_trainer_models/TestModel" trainer = PPOTrainer(brain_params, 0, dummy_config, True, False, 0, "0", False) rewardsout = AllRewardsOutput( reward_signals={ "extrinsic": RewardSignalResult( scaled_reward=np.array([1.0, 1.0], dtype=np.float32), unscaled_reward=np.array([1.0, 1.0], dtype=np.float32), ) }, environment=np.array([1.0, 1.0], dtype=np.float32), ) values = {"extrinsic": np.array([[2.0]], dtype=np.float32)} agent_id = "123" idx = 0 # make sure that we're grabbing from the next_idx for rewards. If we're not, the test will fail. next_idx = 1 trainer.add_rewards_outputs( rewardsout, values=values, agent_id=agent_id, agent_idx=idx, agent_next_idx=next_idx, ) assert trainer.processing_buffer[agent_id]["extrinsic_value_estimates"][0] == 2.0 assert trainer.processing_buffer[agent_id]["extrinsic_rewards"][0] == 1.0 if __name__ == "__main__": pytest.main()