from mlagents.trainers.tf_policy import TFPolicy from mlagents.envs.brain import BrainInfo from mlagents.envs.action_info import ActionInfo from unittest.mock import MagicMock import numpy as np def basic_mock_brain(): mock_brain = MagicMock() mock_brain.vector_action_space_type = "continuous" return mock_brain def basic_params(): return {"use_recurrent": False, "model_path": "my/path"} def test_take_action_returns_empty_with_no_agents(): test_seed = 3 policy = TFPolicy(test_seed, basic_mock_brain(), basic_params()) no_agent_brain_info = BrainInfo([], [], [], agents=[]) result = policy.get_action(no_agent_brain_info) assert result == ActionInfo([], [], None) def test_take_action_returns_nones_on_missing_values(): test_seed = 3 policy = TFPolicy(test_seed, basic_mock_brain(), basic_params()) policy.evaluate = MagicMock(return_value={}) policy.save_memories = MagicMock() brain_info_with_agents = BrainInfo( [], [], [], agents=["an-agent-id"], local_done=[False] ) result = policy.get_action(brain_info_with_agents) assert result == ActionInfo(None, None, {}) def test_take_action_returns_action_info_when_available(): test_seed = 3 policy = TFPolicy(test_seed, basic_mock_brain(), basic_params()) policy_eval_out = { "action": np.array([1.0], dtype=np.float32), "memory_out": np.array([[2.5]], dtype=np.float32), "value": np.array([1.1], dtype=np.float32), } policy.evaluate = MagicMock(return_value=policy_eval_out) brain_info_with_agents = BrainInfo( [], [], [], agents=["an-agent-id"], local_done=[False] ) result = policy.get_action(brain_info_with_agents) expected = ActionInfo( policy_eval_out["action"], policy_eval_out["value"], policy_eval_out ) assert result == expected