import pytest from unittest.mock import patch, Mock from mlagents.trainers.meta_curriculum import MetaCurriculum import json from mlagents.trainers.tests.test_simple_rl import ( Simple1DEnvironment, _check_environment_trains, BRAIN_NAME, ) from mlagents.trainers.tests.test_curriculum import dummy_curriculum_json_str @pytest.fixture def measure_vals(): return {"Brain1": 0.2, "Brain2": 0.3} @pytest.fixture def reward_buff_sizes(): return {"Brain1": 7, "Brain2": 8} def test_curriculum_config(param_name="test_param1", min_lesson_length=100): return { "measure": "progress", "thresholds": [0.1, 0.3, 0.5], "min_lesson_length": min_lesson_length, "signal_smoothing": True, "parameters": {f"{param_name}": [0.0, 4.0, 6.0, 8.0]}, } test_meta_curriculum_config = { "Brain1": test_curriculum_config("test_param1"), "Brain2": test_curriculum_config("test_param2"), } def test_set_lesson_nums(): meta_curriculum = MetaCurriculum(test_meta_curriculum_config) meta_curriculum.lesson_nums = {"Brain1": 1, "Brain2": 3} assert meta_curriculum.brains_to_curricula["Brain1"].lesson_num == 1 assert meta_curriculum.brains_to_curricula["Brain2"].lesson_num == 3 def test_increment_lessons(measure_vals): meta_curriculum = MetaCurriculum(test_meta_curriculum_config) meta_curriculum.brains_to_curricula["Brain1"] = Mock() meta_curriculum.brains_to_curricula["Brain2"] = Mock() meta_curriculum.increment_lessons(measure_vals) meta_curriculum.brains_to_curricula["Brain1"].increment_lesson.assert_called_with( 0.2 ) meta_curriculum.brains_to_curricula["Brain2"].increment_lesson.assert_called_with( 0.3 ) @patch("mlagents.trainers.curriculum.Curriculum") @patch("mlagents.trainers.curriculum.Curriculum") def test_increment_lessons_with_reward_buff_sizes( curriculum_a, curriculum_b, measure_vals, reward_buff_sizes ): curriculum_a.min_lesson_length = 5 curriculum_b.min_lesson_length = 10 meta_curriculum = MetaCurriculum(test_meta_curriculum_config) meta_curriculum.brains_to_curricula["Brain1"] = curriculum_a meta_curriculum.brains_to_curricula["Brain2"] = curriculum_b meta_curriculum.increment_lessons(measure_vals, reward_buff_sizes=reward_buff_sizes) curriculum_a.increment_lesson.assert_called_with(0.2) curriculum_b.increment_lesson.assert_not_called() def test_set_all_curriculums_to_lesson_num(): meta_curriculum = MetaCurriculum(test_meta_curriculum_config) meta_curriculum.set_all_curricula_to_lesson_num(2) assert meta_curriculum.brains_to_curricula["Brain1"].lesson_num == 2 assert meta_curriculum.brains_to_curricula["Brain2"].lesson_num == 2 def test_get_config(): meta_curriculum = MetaCurriculum(test_meta_curriculum_config) assert meta_curriculum.get_config() == {"test_param1": 0.0, "test_param2": 0.0} TRAINER_CONFIG = """ default: trainer: ppo batch_size: 16 beta: 5.0e-3 buffer_size: 64 epsilon: 0.2 hidden_units: 128 lambd: 0.95 learning_rate: 5.0e-3 max_steps: 300 memory_size: 256 normalize: false num_epoch: 3 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 50 use_recurrent: false reward_signals: extrinsic: strength: 1.0 gamma: 0.99 """ @pytest.mark.parametrize("curriculum_brain_name", [BRAIN_NAME, "WrongBrainName"]) def test_simple_metacurriculum(curriculum_brain_name): env = Simple1DEnvironment(use_discrete=False) curriculum_config = json.loads(dummy_curriculum_json_str) mc = MetaCurriculum({curriculum_brain_name: curriculum_config}) _check_environment_trains(env, TRAINER_CONFIG, mc, -100.0)