using System.Collections.Generic;
using System.Linq;
using Unity.MLAgents.Inference.Utils;
using Unity.MLAgents.Actuators;
using Unity.Barracuda;
using UnityEngine;
namespace Unity.MLAgents.Inference
{
///
/// The Applier for the Continuous Action output tensor. Tensor is assumed to contain the
/// continuous action data of the agents in the batch.
///
internal class ContinuousActionOutputApplier : TensorApplier.IApplier
{
readonly ActionSpec m_ActionSpec;
public ContinuousActionOutputApplier(ActionSpec actionSpec)
{
m_ActionSpec = actionSpec;
}
public void Apply(TensorProxy tensorProxy, IList actionIds, Dictionary lastActions)
{
var actionSize = tensorProxy.shape[tensorProxy.shape.Length - 1];
var agentIndex = 0;
for (var i = 0; i < actionIds.Count; i++)
{
var agentId = actionIds[i];
if (lastActions.ContainsKey(agentId))
{
var actionBuffer = lastActions[agentId];
if (actionBuffer.IsEmpty())
{
actionBuffer = new ActionBuffers(m_ActionSpec);
lastActions[agentId] = actionBuffer;
}
var continuousBuffer = actionBuffer.ContinuousActions;
for (var j = 0; j < actionSize; j++)
{
continuousBuffer[j] = tensorProxy.data[agentIndex, j];
}
}
agentIndex++;
}
}
}
///
/// The Applier for the Discrete Action output tensor.
///
internal class DiscreteActionOutputApplier : TensorApplier.IApplier
{
readonly ActionSpec m_ActionSpec;
public DiscreteActionOutputApplier(ActionSpec actionSpec, int seed, ITensorAllocator allocator)
{
m_ActionSpec = actionSpec;
}
public void Apply(TensorProxy tensorProxy, IList actionIds, Dictionary lastActions)
{
var agentIndex = 0;
var actionSize = tensorProxy.shape[tensorProxy.shape.Length - 1];
for (var i = 0; i < actionIds.Count; i++)
{
var agentId = actionIds[i];
if (lastActions.ContainsKey(agentId))
{
var actionBuffer = lastActions[agentId];
if (actionBuffer.IsEmpty())
{
actionBuffer = new ActionBuffers(m_ActionSpec);
lastActions[agentId] = actionBuffer;
}
var discreteBuffer = actionBuffer.DiscreteActions;
for (var j = 0; j < actionSize; j++)
{
discreteBuffer[j] = (int)tensorProxy.data[agentIndex, j];
}
}
agentIndex++;
}
}
}
///
/// The Applier for the Discrete Action output tensor. Uses multinomial to sample discrete
/// actions from the logits contained in the tensor.
///
internal class LegacyDiscreteActionOutputApplier : TensorApplier.IApplier
{
readonly int[] m_ActionSize;
readonly Multinomial m_Multinomial;
readonly ActionSpec m_ActionSpec;
readonly int[] m_StartActionIndices;
readonly float[] m_CdfBuffer;
public LegacyDiscreteActionOutputApplier(ActionSpec actionSpec, int seed, ITensorAllocator allocator)
{
m_ActionSize = actionSpec.BranchSizes;
m_Multinomial = new Multinomial(seed);
m_ActionSpec = actionSpec;
m_StartActionIndices = Utilities.CumSum(m_ActionSize);
// Scratch space for computing the cumulative distribution function.
// In order to reuse it, make it the size of the largest branch.
var largestBranch = Mathf.Max(m_ActionSize);
m_CdfBuffer = new float[largestBranch];
}
public void Apply(TensorProxy tensorProxy, IList actionIds, Dictionary lastActions)
{
var agentIndex = 0;
for (var i = 0; i < actionIds.Count; i++)
{
var agentId = actionIds[i];
if (lastActions.ContainsKey(agentId))
{
var actionBuffer = lastActions[agentId];
if (actionBuffer.IsEmpty())
{
actionBuffer = new ActionBuffers(m_ActionSpec);
lastActions[agentId] = actionBuffer;
}
var discreteBuffer = actionBuffer.DiscreteActions;
for (var j = 0; j < m_ActionSize.Length; j++)
{
ComputeCdf(tensorProxy, agentIndex, m_StartActionIndices[j], m_ActionSize[j]);
discreteBuffer[j] = m_Multinomial.Sample(m_CdfBuffer, m_ActionSize[j]);
}
}
agentIndex++;
}
}
///
/// Compute the cumulative distribution function for a given agent's action
/// given the log-probabilities.
/// The results are stored in m_CdfBuffer, which is the size of the largest action's number of branches.
///
///
/// Index of the agent being considered
/// Offset into the tensor's channel.
///
internal void ComputeCdf(TensorProxy logProbs, int batch, int channelOffset, int branchSize)
{
// Find the class maximum
var maxProb = float.NegativeInfinity;
for (var cls = 0; cls < branchSize; ++cls)
{
maxProb = Mathf.Max(logProbs.data[batch, cls + channelOffset], maxProb);
}
// Sum the log probabilities and compute CDF
var sumProb = 0.0f;
for (var cls = 0; cls < branchSize; ++cls)
{
sumProb += Mathf.Exp(logProbs.data[batch, cls + channelOffset] - maxProb);
m_CdfBuffer[cls] = sumProb;
}
}
}
///
/// The Applier for the Memory output tensor. Tensor is assumed to contain the new
/// memory data of the agents in the batch.
///
internal class MemoryOutputApplier : TensorApplier.IApplier
{
Dictionary> m_Memories;
public MemoryOutputApplier(
Dictionary> memories)
{
m_Memories = memories;
}
public void Apply(TensorProxy tensorProxy, IList actionIds, Dictionary lastActions)
{
var agentIndex = 0;
var memorySize = tensorProxy.data.width;
for (var i = 0; i < actionIds.Count; i++)
{
var agentId = actionIds[i];
List memory;
if (!m_Memories.TryGetValue(agentId, out memory)
|| memory.Count < memorySize)
{
memory = new List();
memory.AddRange(Enumerable.Repeat(0f, memorySize));
}
for (var j = 0; j < memorySize; j++)
{
memory[j] = tensorProxy.data[agentIndex, 0, j, 0];
}
m_Memories[agentId] = memory;
agentIndex++;
}
}
}
}