import unittest.mock as mock import pytest import mlagents.trainers.tests.mock_brain as mb import numpy as np import tensorflow as tf import yaml import os from mlagents.trainers.ppo.models import PPOModel from mlagents.trainers.ppo.trainer import discount_rewards from mlagents.trainers.ppo.policy import PPOPolicy from mlagents.trainers.demo_loader import make_demo_buffer from mlagents.envs import UnityEnvironment from mlagents.envs.mock_communicator import MockCommunicator @pytest.fixture def dummy_config(): return yaml.safe_load( """ trainer: ppo batch_size: 32 beta: 5.0e-3 buffer_size: 512 epsilon: 0.2 hidden_units: 128 lambd: 0.95 learning_rate: 3.0e-4 max_steps: 5.0e4 normalize: true num_epoch: 5 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 1000 use_recurrent: false memory_size: 8 curiosity_strength: 0.0 curiosity_enc_size: 1 reward_signals: extrinsic: strength: 1.0 gamma: 0.99 """ ) @pytest.fixture def gail_dummy_config(): return { "gail": { "strength": 0.1, "gamma": 0.9, "encoding_size": 128, "demo_path": os.path.dirname(os.path.abspath(__file__)) + "/test.demo", } } @pytest.fixture def curiosity_dummy_config(): return {"curiosity": {"strength": 0.1, "gamma": 0.9, "encoding_size": 128}} VECTOR_ACTION_SPACE = [2] VECTOR_OBS_SPACE = 8 DISCRETE_ACTION_SPACE = [3, 3, 3, 2] BUFFER_INIT_SAMPLES = 20 NUM_AGENTS = 12 def create_ppo_policy_mock( mock_env, dummy_config, reward_signal_config, use_rnn, use_discrete, use_visual ): if not use_visual: mock_brain = mb.create_mock_brainparams( vector_action_space_type="discrete" if use_discrete else "continuous", vector_action_space_size=DISCRETE_ACTION_SPACE if use_discrete else VECTOR_ACTION_SPACE, vector_observation_space_size=VECTOR_OBS_SPACE, ) mock_braininfo = mb.create_mock_braininfo( num_agents=NUM_AGENTS, num_vector_observations=VECTOR_OBS_SPACE, num_vector_acts=sum( DISCRETE_ACTION_SPACE if use_discrete else VECTOR_ACTION_SPACE ), discrete=use_discrete, num_discrete_branches=len(DISCRETE_ACTION_SPACE), ) else: mock_brain = mb.create_mock_brainparams( vector_action_space_type="discrete" if use_discrete else "continuous", vector_action_space_size=DISCRETE_ACTION_SPACE if use_discrete else VECTOR_ACTION_SPACE, vector_observation_space_size=0, number_visual_observations=1, ) mock_braininfo = mb.create_mock_braininfo( num_agents=NUM_AGENTS, num_vis_observations=1, num_vector_acts=sum( DISCRETE_ACTION_SPACE if use_discrete else VECTOR_ACTION_SPACE ), discrete=use_discrete, num_discrete_branches=len(DISCRETE_ACTION_SPACE), ) mb.setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo) env = mock_env() trainer_parameters = dummy_config model_path = env.brain_names[0] trainer_parameters["model_path"] = model_path trainer_parameters["keep_checkpoints"] = 3 trainer_parameters["reward_signals"].update(reward_signal_config) trainer_parameters["use_recurrent"] = use_rnn policy = PPOPolicy(0, mock_brain, trainer_parameters, False, False) return env, policy def reward_signal_eval(env, policy, reward_signal_name): brain_infos = env.reset() brain_info = brain_infos[env.brain_names[0]] next_brain_info = env.step()[env.brain_names[0]] # Test evaluate rsig_result = policy.reward_signals[reward_signal_name].evaluate( brain_info, next_brain_info ) assert rsig_result.scaled_reward.shape == (NUM_AGENTS,) assert rsig_result.unscaled_reward.shape == (NUM_AGENTS,) def reward_signal_update(env, policy, reward_signal_name): buffer = mb.simulate_rollout(env, policy, BUFFER_INIT_SAMPLES) out = policy.reward_signals[reward_signal_name].update(buffer.update_buffer, 2) assert type(out) is dict @mock.patch("mlagents.envs.UnityEnvironment") def test_gail_cc(mock_env, dummy_config, gail_dummy_config): env, policy = create_ppo_policy_mock( mock_env, dummy_config, gail_dummy_config, False, False, False ) reward_signal_eval(env, policy, "gail") reward_signal_update(env, policy, "gail") @mock.patch("mlagents.envs.UnityEnvironment") def test_gail_dc_visual(mock_env, dummy_config, gail_dummy_config): gail_dummy_config["gail"]["demo_path"] = ( os.path.dirname(os.path.abspath(__file__)) + "/testdcvis.demo" ) env, policy = create_ppo_policy_mock( mock_env, dummy_config, gail_dummy_config, False, True, True ) reward_signal_eval(env, policy, "gail") reward_signal_update(env, policy, "gail") @mock.patch("mlagents.envs.UnityEnvironment") def test_gail_rnn(mock_env, dummy_config, gail_dummy_config): env, policy = create_ppo_policy_mock( mock_env, dummy_config, gail_dummy_config, True, False, False ) reward_signal_eval(env, policy, "gail") reward_signal_update(env, policy, "gail") @mock.patch("mlagents.envs.UnityEnvironment") def test_curiosity_cc(mock_env, dummy_config, curiosity_dummy_config): env, policy = create_ppo_policy_mock( mock_env, dummy_config, curiosity_dummy_config, False, False, False ) reward_signal_eval(env, policy, "curiosity") reward_signal_update(env, policy, "curiosity") @mock.patch("mlagents.envs.UnityEnvironment") def test_curiosity_dc(mock_env, dummy_config, curiosity_dummy_config): env, policy = create_ppo_policy_mock( mock_env, dummy_config, curiosity_dummy_config, False, True, False ) reward_signal_eval(env, policy, "curiosity") reward_signal_update(env, policy, "curiosity") @mock.patch("mlagents.envs.UnityEnvironment") def test_curiosity_visual(mock_env, dummy_config, curiosity_dummy_config): env, policy = create_ppo_policy_mock( mock_env, dummy_config, curiosity_dummy_config, False, False, True ) reward_signal_eval(env, policy, "curiosity") reward_signal_update(env, policy, "curiosity") @mock.patch("mlagents.envs.UnityEnvironment") def test_curiosity_rnn(mock_env, dummy_config, curiosity_dummy_config): env, policy = create_ppo_policy_mock( mock_env, dummy_config, curiosity_dummy_config, True, False, False ) reward_signal_eval(env, policy, "curiosity") reward_signal_update(env, policy, "curiosity") @mock.patch("mlagents.envs.UnityEnvironment") def test_extrinsic(mock_env, dummy_config, curiosity_dummy_config): env, policy = create_ppo_policy_mock( mock_env, dummy_config, curiosity_dummy_config, False, False, False ) reward_signal_eval(env, policy, "extrinsic") reward_signal_update(env, policy, "extrinsic") if __name__ == "__main__": pytest.main()