from typing import Dict, Any import numpy as np from mlagents.trainers.tf_policy import TFPolicy from .model import BCModel from mlagents.trainers.demo_loader import demo_to_buffer from mlagents.trainers.trainer import UnityTrainerException class BCModule: def __init__( self, policy: TFPolicy, policy_learning_rate: float, default_batch_size: int, default_num_epoch: int, strength: float, demo_path: str, steps: int, batch_size: int = None, num_epoch: int = None, samples_per_update: int = 0, ): """ A BC trainer that can be used inline with RL, especially for pretraining. :param policy: The policy of the learning model :param policy_learning_rate: The initial Learning Rate of the policy. Used to set an appropriate learning rate for the pretrainer. :param default_batch_size: The default batch size to use if batch_size isn't provided. :param default_num_epoch: The default num_epoch to use if num_epoch isn't provided. :param strength: The proportion of learning rate used to update through BC. :param steps: The number of steps to anneal BC training over. 0 for continuous training. :param demo_path: The path to the demonstration file. :param batch_size: The batch size to use during BC training. :param num_epoch: Number of epochs to train for during each update. :param samples_per_update: Maximum number of samples to train on during each pretraining update. """ self.policy = policy self.current_lr = policy_learning_rate * strength self.model = BCModel(policy.model, self.current_lr, steps) _, self.demonstration_buffer = demo_to_buffer(demo_path, policy.sequence_length) self.batch_size = batch_size if batch_size else default_batch_size self.num_epoch = num_epoch if num_epoch else default_num_epoch self.n_sequences = max( min(self.batch_size, self.demonstration_buffer.num_experiences) // policy.sequence_length, 1, ) self.has_updated = False self.use_recurrent = self.policy.use_recurrent self.samples_per_update = samples_per_update self.out_dict = { "loss": self.model.loss, "update": self.model.update_batch, "learning_rate": self.model.annealed_learning_rate, } @staticmethod def check_config(config_dict: Dict[str, Any]) -> None: """ Check the pretraining config for the required keys. :param config_dict: Pretraining section of trainer_config """ param_keys = ["strength", "demo_path", "steps"] for k in param_keys: if k not in config_dict: raise UnityTrainerException( "The required pre-training hyper-parameter {0} was not defined. Please check your \ trainer YAML file.".format( k ) ) def update(self) -> Dict[str, Any]: """ Updates model using buffer. :param max_batches: The maximum number of batches to use per update. :return: The loss of the update. """ # Don't continue training if the learning rate has reached 0, to reduce training time. if self.current_lr <= 0: return {"Losses/Pretraining Loss": 0} batch_losses = [] possible_demo_batches = ( self.demonstration_buffer.num_experiences // self.n_sequences ) possible_batches = possible_demo_batches max_batches = self.samples_per_update // self.n_sequences n_epoch = self.num_epoch for _ in range(n_epoch): self.demonstration_buffer.shuffle( sequence_length=self.policy.sequence_length ) if max_batches == 0: num_batches = possible_batches else: num_batches = min(possible_batches, max_batches) for i in range(num_batches // self.policy.sequence_length): demo_update_buffer = self.demonstration_buffer start = i * self.n_sequences * self.policy.sequence_length end = (i + 1) * self.n_sequences * self.policy.sequence_length mini_batch_demo = demo_update_buffer.make_mini_batch(start, end) run_out = self._update_batch(mini_batch_demo, self.n_sequences) loss = run_out["loss"] self.current_lr = run_out["learning_rate"] batch_losses.append(loss) self.has_updated = True update_stats = {"Losses/Pretraining Loss": np.mean(batch_losses)} return update_stats def _update_batch( self, mini_batch_demo: Dict[str, Any], n_sequences: int ) -> Dict[str, Any]: """ Helper function for update_batch. """ feed_dict = { self.policy.model.batch_size: n_sequences, self.policy.model.sequence_length: self.policy.sequence_length, } feed_dict[self.model.action_in_expert] = mini_batch_demo["actions"] if self.policy.model.brain.vector_action_space_type == "continuous": feed_dict[self.policy.model.epsilon] = np.random.normal( size=(1, self.policy.model.act_size[0]) ) else: feed_dict[self.policy.model.action_masks] = np.ones( ( self.n_sequences * self.policy.sequence_length, sum(self.policy.model.brain.vector_action_space_size), ), dtype=np.float32, ) if self.policy.model.brain.vector_observation_space_size > 0: feed_dict[self.policy.model.vector_in] = mini_batch_demo["vector_obs"] for i, _ in enumerate(self.policy.model.visual_in): feed_dict[self.policy.model.visual_in[i]] = mini_batch_demo[ "visual_obs%d" % i ] if self.use_recurrent: feed_dict[self.policy.model.memory_in] = np.zeros( [self.n_sequences, self.policy.m_size], dtype=np.float32 ) if not self.policy.model.brain.vector_action_space_type == "continuous": feed_dict[self.policy.model.prev_action] = mini_batch_demo[ "prev_action" ] network_out = self.policy.sess.run( list(self.out_dict.values()), feed_dict=feed_dict ) run_out = dict(zip(list(self.out_dict.keys()), network_out)) return run_out