from unittest import mock import pytest import numpy as np from gym import spaces from gym_unity.envs import UnityToGymWrapper from mlagents_envs.base_env import ( BehaviorSpec, ActionType, DecisionSteps, TerminalSteps, BehaviorMapping, ) def test_gym_wrapper(): mock_env = mock.MagicMock() mock_spec = create_mock_group_spec() mock_decision_step, mock_terminal_step = create_mock_vector_steps(mock_spec) setup_mock_unityenvironment( mock_env, mock_spec, mock_decision_step, mock_terminal_step ) env = UnityToGymWrapper(mock_env, use_visual=False) assert isinstance(env, UnityToGymWrapper) assert isinstance(env.reset(), np.ndarray) actions = env.action_space.sample() assert actions.shape[0] == 2 obs, rew, done, info = env.step(actions) assert env.observation_space.contains(obs) assert isinstance(obs, np.ndarray) assert isinstance(rew, float) assert isinstance(done, (bool, np.bool_)) assert isinstance(info, dict) def test_branched_flatten(): mock_env = mock.MagicMock() mock_spec = create_mock_group_spec( vector_action_space_type="discrete", vector_action_space_size=[2, 2, 3] ) mock_decision_step, mock_terminal_step = create_mock_vector_steps( mock_spec, num_agents=1 ) setup_mock_unityenvironment( mock_env, mock_spec, mock_decision_step, mock_terminal_step ) env = UnityToGymWrapper(mock_env, use_visual=False, flatten_branched=True) assert isinstance(env.action_space, spaces.Discrete) assert env.action_space.n == 12 assert env._flattener.lookup_action(0) == [0, 0, 0] assert env._flattener.lookup_action(11) == [1, 1, 2] # Check that False produces a MultiDiscrete env = UnityToGymWrapper(mock_env, use_visual=False, flatten_branched=False) assert isinstance(env.action_space, spaces.MultiDiscrete) @pytest.mark.parametrize("use_uint8", [True, False], ids=["float", "uint8"]) def test_gym_wrapper_visual(use_uint8): mock_env = mock.MagicMock() mock_spec = create_mock_group_spec(number_visual_observations=1) mock_decision_step, mock_terminal_step = create_mock_vector_steps( mock_spec, number_visual_observations=1 ) setup_mock_unityenvironment( mock_env, mock_spec, mock_decision_step, mock_terminal_step ) env = UnityToGymWrapper(mock_env, use_visual=True, uint8_visual=use_uint8) assert isinstance(env, UnityToGymWrapper) assert isinstance(env.reset(), np.ndarray) actions = env.action_space.sample() assert actions.shape[0] == 2 obs, rew, done, info = env.step(actions) assert env.observation_space.contains(obs) assert isinstance(obs, np.ndarray) assert isinstance(rew, float) assert isinstance(done, (bool, np.bool_)) assert isinstance(info, dict) # Helper methods def create_mock_group_spec( number_visual_observations=0, vector_action_space_type="continuous", vector_observation_space_size=3, vector_action_space_size=None, ): """ Creates a mock BrainParameters object with parameters. """ # Avoid using mutable object as default param act_type = ActionType.DISCRETE if vector_action_space_type == "continuous": act_type = ActionType.CONTINUOUS if vector_action_space_size is None: vector_action_space_size = 2 else: vector_action_space_size = vector_action_space_size[0] else: if vector_action_space_size is None: vector_action_space_size = (2,) else: vector_action_space_size = tuple(vector_action_space_size) obs_shapes = [(vector_observation_space_size,)] for _ in range(number_visual_observations): obs_shapes += [(8, 8, 3)] return BehaviorSpec(obs_shapes, act_type, vector_action_space_size) def create_mock_vector_steps(specs, num_agents=1, number_visual_observations=0): """ Creates a mock BatchedStepResult with vector observations. Imitates constant vector observations, rewards, dones, and agents. :BehaviorSpecs specs: The BehaviorSpecs for this mock :int num_agents: Number of "agents" to imitate in your BatchedStepResult values. """ obs = [np.array([num_agents * [1, 2, 3]]).reshape(num_agents, 3)] if number_visual_observations: obs += [np.zeros(shape=(num_agents, 8, 8, 3), dtype=np.float32)] rewards = np.array(num_agents * [1.0]) agents = np.array(range(0, num_agents)) return DecisionSteps(obs, rewards, agents, None), TerminalSteps.empty(specs) def setup_mock_unityenvironment(mock_env, mock_spec, mock_decision, mock_termination): """ Takes a mock UnityEnvironment and adds the appropriate properties, defined by the mock GroupSpec and BatchedStepResult. :Mock mock_env: A mock UnityEnvironment, usually empty. :Mock mock_spec: An AgentGroupSpec object that specifies the params of this environment. :Mock mock_decision: A DecisionSteps object that will be returned at each step and reset. :Mock mock_termination: A TerminationSteps object that will be returned at each step and reset. """ mock_env.behavior_specs = BehaviorMapping({"MockBrain": mock_spec}) mock_env.get_steps.return_value = (mock_decision, mock_termination)