import pytest import yaml import os import mlagents.trainers.tests.mock_brain as mb from mlagents.trainers.common.nn_policy import NNPolicy from mlagents.trainers.sac.optimizer import SACOptimizer from mlagents.trainers.ppo.optimizer import PPOOptimizer def ppo_dummy_config(): return yaml.safe_load( """ trainer: ppo batch_size: 32 beta: 5.0e-3 buffer_size: 512 epsilon: 0.2 hidden_units: 128 lambd: 0.95 learning_rate: 3.0e-4 max_steps: 5.0e4 normalize: true num_epoch: 5 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 1000 use_recurrent: false memory_size: 8 reward_signals: extrinsic: strength: 1.0 gamma: 0.99 """ ) def sac_dummy_config(): return yaml.safe_load( """ trainer: sac batch_size: 128 buffer_size: 50000 buffer_init_steps: 0 hidden_units: 128 init_entcoef: 1.0 learning_rate: 3.0e-4 max_steps: 5.0e4 memory_size: 256 normalize: false num_update: 1 train_interval: 1 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 1000 tau: 0.005 use_recurrent: false vis_encode_type: simple behavioral_cloning: demo_path: ./Project/Assets/ML-Agents/Examples/Pyramids/Demos/ExpertPyramid.demo strength: 1.0 steps: 10000000 reward_signals: extrinsic: strength: 1.0 gamma: 0.99 """ ) @pytest.fixture def gail_dummy_config(): return { "gail": { "strength": 0.1, "gamma": 0.9, "encoding_size": 128, "use_vail": True, "demo_path": os.path.dirname(os.path.abspath(__file__)) + "/test.demo", } } @pytest.fixture def curiosity_dummy_config(): return {"curiosity": {"strength": 0.1, "gamma": 0.9, "encoding_size": 128}} VECTOR_ACTION_SPACE = [2] VECTOR_OBS_SPACE = 8 DISCRETE_ACTION_SPACE = [3, 3, 3, 2] BUFFER_INIT_SAMPLES = 20 BATCH_SIZE = 12 NUM_AGENTS = 12 def create_optimizer_mock( trainer_config, reward_signal_config, use_rnn, use_discrete, use_visual ): mock_brain = mb.setup_mock_brain( use_discrete, use_visual, vector_action_space=VECTOR_ACTION_SPACE, vector_obs_space=VECTOR_OBS_SPACE, discrete_action_space=DISCRETE_ACTION_SPACE, ) trainer_parameters = trainer_config model_path = "testpath" trainer_parameters["model_path"] = model_path trainer_parameters["keep_checkpoints"] = 3 trainer_parameters["reward_signals"].update(reward_signal_config) trainer_parameters["use_recurrent"] = use_rnn policy = NNPolicy( 0, mock_brain, trainer_parameters, False, False, create_tf_graph=False ) if trainer_parameters["trainer"] == "sac": optimizer = SACOptimizer(policy, trainer_parameters) else: optimizer = PPOOptimizer(policy, trainer_parameters) return optimizer def reward_signal_eval(optimizer, reward_signal_name): buffer = mb.simulate_rollout(BATCH_SIZE, optimizer.policy.brain) # Test evaluate rsig_result = optimizer.reward_signals[reward_signal_name].evaluate_batch(buffer) assert rsig_result.scaled_reward.shape == (BATCH_SIZE,) assert rsig_result.unscaled_reward.shape == (BATCH_SIZE,) def reward_signal_update(optimizer, reward_signal_name): buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, optimizer.policy.brain) feed_dict = optimizer.reward_signals[reward_signal_name].prepare_update( optimizer.policy, buffer.make_mini_batch(0, 10), 2 ) out = optimizer.policy._execute_model( feed_dict, optimizer.reward_signals[reward_signal_name].update_dict ) assert type(out) is dict @pytest.mark.parametrize( "trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"] ) def test_gail_cc(trainer_config, gail_dummy_config): optimizer = create_optimizer_mock( trainer_config, gail_dummy_config, False, False, False ) reward_signal_eval(optimizer, "gail") reward_signal_update(optimizer, "gail") @pytest.mark.parametrize( "trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"] ) def test_gail_dc_visual(trainer_config, gail_dummy_config): gail_dummy_config["gail"]["demo_path"] = ( os.path.dirname(os.path.abspath(__file__)) + "/testdcvis.demo" ) optimizer = create_optimizer_mock( trainer_config, gail_dummy_config, False, True, True ) reward_signal_eval(optimizer, "gail") reward_signal_update(optimizer, "gail") @pytest.mark.parametrize( "trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"] ) def test_gail_rnn(trainer_config, gail_dummy_config): policy = create_optimizer_mock( trainer_config, gail_dummy_config, True, False, False ) reward_signal_eval(policy, "gail") reward_signal_update(policy, "gail") @pytest.mark.parametrize( "trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"] ) def test_curiosity_cc(trainer_config, curiosity_dummy_config): policy = create_optimizer_mock( trainer_config, curiosity_dummy_config, False, False, False ) reward_signal_eval(policy, "curiosity") reward_signal_update(policy, "curiosity") @pytest.mark.parametrize( "trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"] ) def test_curiosity_dc(trainer_config, curiosity_dummy_config): policy = create_optimizer_mock( trainer_config, curiosity_dummy_config, False, True, False ) reward_signal_eval(policy, "curiosity") reward_signal_update(policy, "curiosity") @pytest.mark.parametrize( "trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"] ) def test_curiosity_visual(trainer_config, curiosity_dummy_config): policy = create_optimizer_mock( trainer_config, curiosity_dummy_config, False, False, True ) reward_signal_eval(policy, "curiosity") reward_signal_update(policy, "curiosity") @pytest.mark.parametrize( "trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"] ) def test_curiosity_rnn(trainer_config, curiosity_dummy_config): policy = create_optimizer_mock( trainer_config, curiosity_dummy_config, True, False, False ) reward_signal_eval(policy, "curiosity") reward_signal_update(policy, "curiosity") @pytest.mark.parametrize( "trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"] ) def test_extrinsic(trainer_config, curiosity_dummy_config): policy = create_optimizer_mock( trainer_config, curiosity_dummy_config, False, False, False ) reward_signal_eval(policy, "extrinsic") reward_signal_update(policy, "extrinsic") if __name__ == "__main__": pytest.main()