import unittest.mock as mock import pytest import numpy as np import tensorflow as tf import yaml from mlagents.trainers.bc.models import BehavioralCloningModel from mlagents.trainers.bc.policy import BCPolicy from mlagents.envs import UnityEnvironment from tests.mock_communicator import MockCommunicator @pytest.fixture def dummy_config(): return yaml.load( ''' hidden_units: 128 learning_rate: 3.0e-4 num_layers: 2 use_recurrent: false sequence_length: 32 memory_size: 32 ''') @mock.patch('mlagents.envs.UnityEnvironment.executable_launcher') @mock.patch('mlagents.envs.UnityEnvironment.get_communicator') def test_bc_policy_evaluate(mock_communicator, mock_launcher, dummy_config): tf.reset_default_graph() mock_communicator.return_value = MockCommunicator( discrete_action=False, visual_inputs=0) env = UnityEnvironment(' ') brain_infos = env.reset() brain_info = brain_infos[env.brain_names[0]] trainer_parameters = dummy_config model_path = env.brain_names[0] trainer_parameters['model_path'] = model_path trainer_parameters['keep_checkpoints'] = 3 policy = BCPolicy(0, env.brains[env.brain_names[0]], trainer_parameters, False) run_out = policy.evaluate(brain_info) assert run_out['action'].shape == (3, 2) env.close() @mock.patch('mlagents.envs.UnityEnvironment.executable_launcher') @mock.patch('mlagents.envs.UnityEnvironment.get_communicator') def test_cc_bc_model(mock_communicator, mock_launcher): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): mock_communicator.return_value = MockCommunicator( discrete_action=False, visual_inputs=0) env = UnityEnvironment(' ') model = BehavioralCloningModel(env.brains["RealFakeBrain"]) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.policy] feed_dict = {model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]])} sess.run(run_list, feed_dict=feed_dict) env.close() @mock.patch('mlagents.envs.UnityEnvironment.executable_launcher') @mock.patch('mlagents.envs.UnityEnvironment.get_communicator') def test_dc_bc_model(mock_communicator, mock_launcher): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): mock_communicator.return_value = MockCommunicator( discrete_action=True, visual_inputs=0) env = UnityEnvironment(' ') model = BehavioralCloningModel(env.brains["RealFakeBrain"]) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.action_probs] feed_dict = {model.batch_size: 2, model.dropout_rate: 1.0, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.action_masks: np.ones([2, 2])} sess.run(run_list, feed_dict=feed_dict) env.close() @mock.patch('mlagents.envs.UnityEnvironment.executable_launcher') @mock.patch('mlagents.envs.UnityEnvironment.get_communicator') def test_visual_dc_bc_model(mock_communicator, mock_launcher): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): mock_communicator.return_value = MockCommunicator( discrete_action=True, visual_inputs=2) env = UnityEnvironment(' ') model = BehavioralCloningModel(env.brains["RealFakeBrain"]) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.action_probs] feed_dict = {model.batch_size: 2, model.dropout_rate: 1.0, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.visual_in[0]: np.ones([2, 40, 30, 3]), model.visual_in[1]: np.ones([2, 40, 30, 3]), model.action_masks: np.ones([2, 2])} sess.run(run_list, feed_dict=feed_dict) env.close() @mock.patch('mlagents.envs.UnityEnvironment.executable_launcher') @mock.patch('mlagents.envs.UnityEnvironment.get_communicator') def test_visual_cc_bc_model(mock_communicator, mock_launcher): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): mock_communicator.return_value = MockCommunicator( discrete_action=False, visual_inputs=2) env = UnityEnvironment(' ') model = BehavioralCloningModel(env.brains["RealFakeBrain"]) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.policy] feed_dict = {model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.visual_in[0]: np.ones([2, 40, 30, 3]), model.visual_in[1]: np.ones([2, 40, 30, 3])} sess.run(run_list, feed_dict=feed_dict) env.close() if __name__ == '__main__': pytest.main()