from typing import Dict, Optional, Tuple, List from mlagents.torch_utils import torch import numpy as np from mlagents.trainers.buffer import AgentBuffer from mlagents.trainers.trajectory import ObsUtil from mlagents.trainers.torch.components.bc.module import BCModule from mlagents.trainers.torch.components.reward_providers import create_reward_provider from mlagents.trainers.policy.torch_policy import TorchPolicy from mlagents.trainers.optimizer import Optimizer from mlagents.trainers.settings import TrainerSettings from mlagents.trainers.torch.utils import ModelUtils class TorchOptimizer(Optimizer): def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings): super().__init__() self.policy = policy self.trainer_settings = trainer_settings self.update_dict: Dict[str, torch.Tensor] = {} self.value_heads: Dict[str, torch.Tensor] = {} self.memory_in: torch.Tensor = None self.memory_out: torch.Tensor = None self.m_size: int = 0 self.global_step = torch.tensor(0) self.bc_module: Optional[BCModule] = None self.create_reward_signals(trainer_settings.reward_signals) if trainer_settings.behavioral_cloning is not None: self.bc_module = BCModule( self.policy, trainer_settings.behavioral_cloning, policy_learning_rate=trainer_settings.hyperparameters.learning_rate, default_batch_size=trainer_settings.hyperparameters.batch_size, default_num_epoch=3, ) def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]: pass def create_reward_signals(self, reward_signal_configs): """ Create reward signals :param reward_signal_configs: Reward signal config. """ for reward_signal, settings in reward_signal_configs.items(): # Name reward signals by string in case we have duplicates later self.reward_signals[reward_signal.value] = create_reward_provider( reward_signal, self.policy.behavior_spec, settings ) def get_trajectory_value_estimates( self, batch: AgentBuffer, next_obs: List[np.ndarray], next_critic_obs: List[List[np.ndarray]], done: bool, ) -> Tuple[Dict[str, np.ndarray], Dict[str, float]]: n_obs = len(self.policy.behavior_spec.sensor_specs) current_obs = ObsUtil.from_buffer(batch, n_obs) # Convert to tensors current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs] next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs] memory = torch.zeros([1, 1, self.policy.m_size]) next_obs = [obs.unsqueeze(0) for obs in next_obs] critic_obs_np = AgentBuffer.obs_list_list_to_obs_batch(batch["critic_obs"]) critic_obs = [ ModelUtils.list_to_tensor_list(_agent_obs) for _agent_obs in critic_obs_np ] next_critic_obs = [ ModelUtils.list_to_tensor_list(_list_obs) for _list_obs in next_critic_obs ] # Expand dimensions of next critic obs next_critic_obs = [ [_obs.unsqueeze(0) for _obs in _list_obs] for _list_obs in next_critic_obs ] memory = torch.zeros([1, 1, self.policy.m_size]) value_estimates, next_memory = self.policy.actor_critic.critic_pass( current_obs, memory, sequence_length=batch.num_experiences, critic_obs=critic_obs, ) next_value_estimate, _ = self.policy.actor_critic.critic_pass( next_obs, next_memory, sequence_length=1, critic_obs=next_critic_obs ) for name, estimate in value_estimates.items(): value_estimates[name] = ModelUtils.to_numpy(estimate) next_value_estimate[name] = ModelUtils.to_numpy(next_value_estimate[name]) if done: for k in next_value_estimate: if not self.reward_signals[k].ignore_done: next_value_estimate[k] = 0.0 return value_estimates, next_value_estimate