from typing import * import cloudpickle from mlagents.envs import UnityEnvironment from mlagents.envs.exception import UnityCommunicationException from multiprocessing import Process, Pipe, Queue from multiprocessing.connection import Connection from queue import Empty as EmptyQueueException from mlagents.envs.base_unity_environment import BaseUnityEnvironment from mlagents.envs.env_manager import EnvManager, StepInfo from mlagents.envs.timers import ( TimerNode, timed, hierarchical_timer, reset_timers, get_timer_root, ) from mlagents.envs import AllBrainInfo, BrainParameters, ActionInfo class EnvironmentCommand(NamedTuple): name: str payload: Any = None class EnvironmentResponse(NamedTuple): name: str worker_id: int payload: Any class StepResponse(NamedTuple): all_brain_info: AllBrainInfo timer_root: Optional[TimerNode] class UnityEnvWorker: def __init__(self, process: Process, worker_id: int, conn: Connection): self.process = process self.worker_id = worker_id self.conn = conn self.previous_step: StepInfo = StepInfo(None, {}, None) self.previous_all_action_info: Dict[str, ActionInfo] = {} self.waiting = False def send(self, name: str, payload=None): try: cmd = EnvironmentCommand(name, payload) self.conn.send(cmd) except (BrokenPipeError, EOFError): raise UnityCommunicationException("UnityEnvironment worker: send failed.") def recv(self) -> EnvironmentResponse: try: response: EnvironmentResponse = self.conn.recv() return response except (BrokenPipeError, EOFError): raise UnityCommunicationException("UnityEnvironment worker: recv failed.") def close(self): try: self.conn.send(EnvironmentCommand("close")) except (BrokenPipeError, EOFError): pass self.process.join() def worker( parent_conn: Connection, step_queue: Queue, pickled_env_factory: str, worker_id: int ): env_factory: Callable[[int], UnityEnvironment] = cloudpickle.loads( pickled_env_factory ) env = env_factory(worker_id) def _send_response(cmd_name, payload): parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload)) try: while True: cmd: EnvironmentCommand = parent_conn.recv() if cmd.name == "step": all_action_info = cmd.payload # When an environment is "global_done" it means automatic agent reset won't occur, so we need # to perform an academy reset. if env.global_done: all_brain_info = env.reset() else: actions = {} memories = {} texts = {} values = {} for brain_name, action_info in all_action_info.items(): actions[brain_name] = action_info.action memories[brain_name] = action_info.memory texts[brain_name] = action_info.text values[brain_name] = action_info.value all_brain_info = env.step(actions, memories, texts, values) # The timers in this process are independent from all the processes and the "main" process # So after we send back the root timer, we can safely clear them. # Note that we could randomly return timers a fraction of the time if we wanted to reduce # the data transferred. # TODO get gauges from the workers and merge them in the main process too. step_response = StepResponse(all_brain_info, get_timer_root()) step_queue.put(EnvironmentResponse("step", worker_id, step_response)) reset_timers() elif cmd.name == "external_brains": _send_response("external_brains", env.external_brains) elif cmd.name == "reset_parameters": _send_response("reset_parameters", env.reset_parameters) elif cmd.name == "reset": all_brain_info = env.reset( cmd.payload[0], cmd.payload[1], cmd.payload[2] ) _send_response("reset", all_brain_info) elif cmd.name == "global_done": _send_response("global_done", env.global_done) elif cmd.name == "close": break except (KeyboardInterrupt, UnityCommunicationException): print("UnityEnvironment worker: environment stopping.") step_queue.put(EnvironmentResponse("env_close", worker_id, None)) finally: step_queue.close() env.close() class SubprocessEnvManager(EnvManager): def __init__( self, env_factory: Callable[[int], BaseUnityEnvironment], n_env: int = 1 ): super().__init__() self.env_workers: List[UnityEnvWorker] = [] self.step_queue: Queue = Queue() for worker_idx in range(n_env): self.env_workers.append( self.create_worker(worker_idx, self.step_queue, env_factory) ) @staticmethod def create_worker( worker_id: int, step_queue: Queue, env_factory: Callable[[int], BaseUnityEnvironment], ) -> UnityEnvWorker: parent_conn, child_conn = Pipe() # Need to use cloudpickle for the env factory function since function objects aren't picklable # on Windows as of Python 3.6. pickled_env_factory = cloudpickle.dumps(env_factory) child_process = Process( target=worker, args=(child_conn, step_queue, pickled_env_factory, worker_id) ) child_process.start() return UnityEnvWorker(child_process, worker_id, parent_conn) def _queue_steps(self) -> None: for env_worker in self.env_workers: if not env_worker.waiting: env_action_info = self._take_step(env_worker.previous_step) env_worker.previous_all_action_info = env_action_info env_worker.send("step", env_action_info) env_worker.waiting = True def step(self) -> List[StepInfo]: # Queue steps for any workers which aren't in the "waiting" state. self._queue_steps() worker_steps: List[EnvironmentResponse] = [] step_workers: Set[int] = set() # Poll the step queue for completed steps from environment workers until we retrieve # 1 or more, which we will then return as StepInfos while len(worker_steps) < 1: try: while True: step = self.step_queue.get_nowait() if step.name == "env_close": raise UnityCommunicationException( "At least one of the environments has closed." ) self.env_workers[step.worker_id].waiting = False if step.worker_id not in step_workers: worker_steps.append(step) step_workers.add(step.worker_id) except EmptyQueueException: pass step_infos = self._postprocess_steps(worker_steps) return step_infos def reset( self, config=None, train_mode=True, custom_reset_parameters=None ) -> List[StepInfo]: while any([ew.waiting for ew in self.env_workers]): if not self.step_queue.empty(): step = self.step_queue.get_nowait() self.env_workers[step.worker_id].waiting = False # First enqueue reset commands for all workers so that they reset in parallel for ew in self.env_workers: ew.send("reset", (config, train_mode, custom_reset_parameters)) # Next (synchronously) collect the reset observations from each worker in sequence for ew in self.env_workers: ew.previous_step = StepInfo(None, ew.recv().payload, None) return list(map(lambda ew: ew.previous_step, self.env_workers)) @property def external_brains(self) -> Dict[str, BrainParameters]: self.env_workers[0].send("external_brains") return self.env_workers[0].recv().payload @property def reset_parameters(self) -> Dict[str, float]: self.env_workers[0].send("reset_parameters") return self.env_workers[0].recv().payload def close(self) -> None: self.step_queue.close() self.step_queue.join_thread() for env_worker in self.env_workers: env_worker.close() def _postprocess_steps( self, env_steps: List[EnvironmentResponse] ) -> List[StepInfo]: step_infos = [] timer_nodes = [] for step in env_steps: payload: StepResponse = step.payload env_worker = self.env_workers[step.worker_id] new_step = StepInfo( env_worker.previous_step.current_all_brain_info, payload.all_brain_info, env_worker.previous_all_action_info, ) step_infos.append(new_step) env_worker.previous_step = new_step if payload.timer_root: timer_nodes.append(payload.timer_root) if timer_nodes: with hierarchical_timer("workers") as main_timer_node: for worker_timer_node in timer_nodes: main_timer_node.merge( worker_timer_node, root_name="worker_root", is_parallel=True ) return step_infos @timed def _take_step(self, last_step: StepInfo) -> Dict[str, ActionInfo]: all_action_info: Dict[str, ActionInfo] = {} for brain_name, brain_info in last_step.current_all_brain_info.items(): all_action_info[brain_name] = self.policies[brain_name].get_action( brain_info ) return all_action_info