import pytest from unittest.mock import patch, call, mock_open from mlagents.trainers.meta_curriculum import MetaCurriculum from mlagents.trainers.curriculum import Curriculum from mlagents.trainers.exception import MetaCurriculumError from mlagents.trainers.tests.test_simple_rl import ( Simple1DEnvironment, _check_environment_trains, BRAIN_NAME, ) from mlagents.trainers.tests.test_curriculum import ( dummy_curriculum_json_str, dummy_curriculum_config, ) @pytest.fixture def default_reset_parameters(): return {"param1": 1, "param2": 2, "param3": 3} @pytest.fixture def more_reset_parameters(): return {"param4": 4, "param5": 5, "param6": 6} @pytest.fixture def measure_vals(): return {"Brain1": 0.2, "Brain2": 0.3} @pytest.fixture def reward_buff_sizes(): return {"Brain1": 7, "Brain2": 8} @patch("mlagents.trainers.curriculum.Curriculum.get_config", return_value={}) @patch( "mlagents.trainers.curriculum.Curriculum.load_curriculum_file", return_value=dummy_curriculum_config, ) @patch("os.listdir", return_value=["Brain1.json", "Brain2.test.json"]) def test_init_meta_curriculum_happy_path( listdir, mock_curriculum_init, mock_curriculum_get_config, default_reset_parameters ): meta_curriculum = MetaCurriculum.from_directory("test/") assert len(meta_curriculum.brains_to_curricula) == 2 assert "Brain1" in meta_curriculum.brains_to_curricula assert "Brain2.test" in meta_curriculum.brains_to_curricula calls = [call("test/Brain1.json"), call("test/Brain2.test.json")] mock_curriculum_init.assert_has_calls(calls) @patch("os.listdir", side_effect=NotADirectoryError()) def test_init_meta_curriculum_bad_curriculum_folder_raises_error(listdir): with pytest.raises(MetaCurriculumError): MetaCurriculum.from_directory("test/") @patch("mlagents.trainers.curriculum.Curriculum") @patch("mlagents.trainers.curriculum.Curriculum") def test_set_lesson_nums(curriculum_a, curriculum_b): meta_curriculum = MetaCurriculum({"Brain1": curriculum_a, "Brain2": curriculum_b}) meta_curriculum.lesson_nums = {"Brain1": 1, "Brain2": 3} assert curriculum_a.lesson_num == 1 assert curriculum_b.lesson_num == 3 @patch("mlagents.trainers.curriculum.Curriculum") @patch("mlagents.trainers.curriculum.Curriculum") def test_increment_lessons(curriculum_a, curriculum_b, measure_vals): meta_curriculum = MetaCurriculum({"Brain1": curriculum_a, "Brain2": curriculum_b}) meta_curriculum.increment_lessons(measure_vals) curriculum_a.increment_lesson.assert_called_with(0.2) curriculum_b.increment_lesson.assert_called_with(0.3) @patch("mlagents.trainers.curriculum.Curriculum") @patch("mlagents.trainers.curriculum.Curriculum") def test_increment_lessons_with_reward_buff_sizes( curriculum_a, curriculum_b, measure_vals, reward_buff_sizes ): curriculum_a.min_lesson_length = 5 curriculum_b.min_lesson_length = 10 meta_curriculum = MetaCurriculum({"Brain1": curriculum_a, "Brain2": curriculum_b}) meta_curriculum.increment_lessons(measure_vals, reward_buff_sizes=reward_buff_sizes) curriculum_a.increment_lesson.assert_called_with(0.2) curriculum_b.increment_lesson.assert_not_called() @patch("mlagents.trainers.curriculum.Curriculum") @patch("mlagents.trainers.curriculum.Curriculum") def test_set_all_curriculums_to_lesson_num(curriculum_a, curriculum_b): meta_curriculum = MetaCurriculum({"Brain1": curriculum_a, "Brain2": curriculum_b}) meta_curriculum.set_all_curricula_to_lesson_num(2) assert curriculum_a.lesson_num == 2 assert curriculum_b.lesson_num == 2 @patch("mlagents.trainers.curriculum.Curriculum") @patch("mlagents.trainers.curriculum.Curriculum") def test_get_config( curriculum_a, curriculum_b, default_reset_parameters, more_reset_parameters ): curriculum_a.get_config.return_value = default_reset_parameters curriculum_b.get_config.return_value = default_reset_parameters meta_curriculum = MetaCurriculum({"Brain1": curriculum_a, "Brain2": curriculum_b}) assert meta_curriculum.get_config() == default_reset_parameters curriculum_b.get_config.return_value = more_reset_parameters new_reset_parameters = dict(default_reset_parameters) new_reset_parameters.update(more_reset_parameters) assert meta_curriculum.get_config() == new_reset_parameters META_CURRICULUM_CONFIG = """ default: trainer: ppo batch_size: 16 beta: 5.0e-3 buffer_size: 64 epsilon: 0.2 hidden_units: 128 lambd: 0.95 learning_rate: 5.0e-3 max_steps: 200 memory_size: 256 normalize: false num_epoch: 3 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 50 use_recurrent: false reward_signals: extrinsic: strength: 1.0 gamma: 0.99 """ @pytest.mark.parametrize("curriculum_brain_name", [BRAIN_NAME, "WrongBrainName"]) def test_simple_metacurriculum(curriculum_brain_name): env = Simple1DEnvironment(use_discrete=False) with patch( "builtins.open", new_callable=mock_open, read_data=dummy_curriculum_json_str ): curriculum_config = Curriculum.load_curriculum_file("TestBrain.json") curriculum = Curriculum("TestBrain", curriculum_config) mc = MetaCurriculum({curriculum_brain_name: curriculum}) _check_environment_trains(env, META_CURRICULUM_CONFIG, mc, -100.0)