# # Unity ML-Agents Toolkit import logging from typing import Dict from collections import defaultdict from mlagents.trainers.optimizer.tf_optimizer import TFOptimizer from mlagents.trainers.buffer import AgentBuffer from mlagents.trainers.trainer import Trainer from mlagents.trainers.exception import UnityTrainerException from mlagents.trainers.components.reward_signals import RewardSignalResult LOGGER = logging.getLogger("mlagents.trainers") RewardSignalResults = Dict[str, RewardSignalResult] class RLTrainer(Trainer): # pylint: disable=abstract-method """ This class is the base class for trainers that use Reward Signals. """ def __init__(self, *args, **kwargs): super(RLTrainer, self).__init__(*args, **kwargs) # Make sure we have at least one reward_signal if not self.trainer_parameters["reward_signals"]: raise UnityTrainerException( "No reward signals were defined. At least one must be used with {}.".format( self.__class__.__name__ ) ) # collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward # used for reporting only. We always want to report the environment reward to Tensorboard, regardless # of what reward signals are actually present. self.collected_rewards: Dict[str, Dict[str, int]] = { "environment": defaultdict(lambda: 0) } self.update_buffer: AgentBuffer = AgentBuffer() self.episode_steps: Dict[str, int] = defaultdict(lambda: 0) def end_episode(self) -> None: """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. """ for agent_id in self.episode_steps: self.episode_steps[agent_id] = 0 for rewards in self.collected_rewards.values(): for agent_id in rewards: rewards[agent_id] = 0 def _update_end_episode_stats(self, agent_id: str, optimizer: TFOptimizer) -> None: self.episode_steps[agent_id] = 0 for name, rewards in self.collected_rewards.items(): if name == "environment": self.cumulative_returns_since_policy_update.append( rewards.get(agent_id, 0) ) self.reward_buffer.appendleft(rewards.get(agent_id, 0)) rewards[agent_id] = 0 else: self.stats_reporter.add_stat( optimizer.reward_signals[name].stat_name, rewards.get(agent_id, 0) ) rewards[agent_id] = 0 def clear_update_buffer(self) -> None: """ Clear the buffers that have been built up during inference. """ self.update_buffer.reset_agent() def advance(self) -> None: """ Steps the trainer, taking in trajectories and updates if ready """ super().advance() if not self.should_still_train: self.clear_update_buffer()