from typing import Dict, cast import torch from mlagents.trainers.buffer import AgentBuffer from mlagents_envs.timers import timed from mlagents.trainers.policy.torch_policy import TorchPolicy from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer from mlagents.trainers.settings import TrainerSettings, PPOSettings class TorchPPOOptimizer(TorchOptimizer): def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings): """ Takes a Policy and a Dict of trainer parameters and creates an Optimizer around the policy. The PPO optimizer has a value estimator and a loss function. :param policy: A TFPolicy object that will be updated by this PPO Optimizer. :param trainer_params: Trainer parameters dictionary that specifies the properties of the trainer. """ # Create the graph here to give more granular control of the TF graph to the Optimizer. super(TorchPPOOptimizer, self).__init__(policy, trainer_settings) params = list(self.policy.actor_critic.parameters()) self.hyperparameters: PPOSettings = cast( PPOSettings, trainer_settings.hyperparameters ) self.optimizer = torch.optim.Adam( params, lr=self.trainer_settings.hyperparameters.learning_rate ) self.stats_name_to_update_name = { "Losses/Value Loss": "value_loss", "Losses/Policy Loss": "policy_loss", } self.stream_names = list(self.reward_signals.keys()) def ppo_value_loss(self, values, old_values, returns): """ Creates training-specific Tensorflow ops for PPO models. :param returns: :param old_values: :param values: """ decay_epsilon = self.hyperparameters.epsilon value_losses = [] for name, head in values.items(): old_val_tensor = old_values[name] returns_tensor = returns[name] clipped_value_estimate = old_val_tensor + torch.clamp( head - old_val_tensor, -decay_epsilon, decay_epsilon ) v_opt_a = (returns_tensor - head) ** 2 v_opt_b = (returns_tensor - clipped_value_estimate) ** 2 value_loss = torch.mean(torch.max(v_opt_a, v_opt_b)) value_losses.append(value_loss) value_loss = torch.mean(torch.stack(value_losses)) return value_loss def ppo_policy_loss(self, advantages, log_probs, old_log_probs, masks): """ Creates training-specific Tensorflow ops for PPO models. :param masks: :param advantages: :param log_probs: Current policy probabilities :param old_log_probs: Past policy probabilities """ advantage = advantages.unsqueeze(-1) decay_epsilon = self.hyperparameters.epsilon r_theta = torch.exp(log_probs - old_log_probs) p_opt_a = r_theta * advantage p_opt_b = ( torch.clamp(r_theta, 1.0 - decay_epsilon, 1.0 + decay_epsilon) * advantage ) policy_loss = -torch.mean(torch.min(p_opt_a, p_opt_b)) return policy_loss @timed def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]: """ Performs update on model. :param batch: Batch of experiences. :param num_sequences: Number of sequences to process. :return: Results of update. """ returns = {} old_values = {} for name in self.reward_signals: old_values[name] = torch.as_tensor(batch["{}_value_estimates".format(name)]) returns[name] = torch.as_tensor(batch["{}_returns".format(name)]) vec_obs = [torch.as_tensor(batch["vector_obs"])] act_masks = torch.as_tensor(batch["action_mask"]) if self.policy.use_continuous_act: actions = torch.as_tensor(batch["actions"]).unsqueeze(-1) else: actions = torch.as_tensor(batch["actions"]) memories = [ torch.as_tensor(batch["memory"][i]) for i in range(0, len(batch["memory"]), self.policy.sequence_length) ] if len(memories) > 0: memories = torch.stack(memories).unsqueeze(0) if self.policy.use_vis_obs: vis_obs = [] for idx, _ in enumerate( self.policy.actor_critic.network_body.visual_encoders ): vis_ob = torch.as_tensor(batch["visual_obs%d" % idx]) vis_obs.append(vis_ob) else: vis_obs = [] log_probs, entropy, values = self.policy.evaluate_actions( vec_obs, vis_obs, masks=act_masks, actions=actions, memories=memories, seq_len=self.policy.sequence_length, ) value_loss = self.ppo_value_loss(values, old_values, returns) policy_loss = self.ppo_policy_loss( torch.as_tensor(batch["advantages"]), log_probs, torch.as_tensor(batch["action_probs"]), torch.as_tensor(batch["masks"], dtype=torch.int32), ) loss = ( policy_loss + 0.5 * value_loss - self.hyperparameters.beta * torch.mean(entropy) ) self.optimizer.zero_grad() loss.backward() self.optimizer.step() update_stats = { "Losses/Policy Loss": abs(policy_loss.detach().numpy()), "Losses/Value Loss": value_loss.detach().numpy(), } return update_stats