import logging import numpy as np from typing import Any, Dict import tensorflow as tf from mlagents.envs.timers import timed from mlagents.trainers import BrainInfo, ActionInfo from mlagents.trainers.models import EncoderType from mlagents.trainers.ppo.models import PPOModel from mlagents.trainers.tf_policy import TFPolicy from mlagents.trainers.components.reward_signals.reward_signal_factory import ( create_reward_signal, ) from mlagents.trainers.components.bc.module import BCModule logger = logging.getLogger("mlagents.trainers") class PPOPolicy(TFPolicy): def __init__(self, seed, brain, trainer_params, is_training, load): """ Policy for Proximal Policy Optimization Networks. :param seed: Random seed. :param brain: Assigned Brain object. :param trainer_params: Defined training parameters. :param is_training: Whether the model should be trained. :param load: Whether a pre-trained model will be loaded or a new one created. """ super().__init__(seed, brain, trainer_params) reward_signal_configs = trainer_params["reward_signals"] self.reward_signals = {} with self.graph.as_default(): self.model = PPOModel( brain, lr=float(trainer_params["learning_rate"]), h_size=int(trainer_params["hidden_units"]), epsilon=float(trainer_params["epsilon"]), beta=float(trainer_params["beta"]), max_step=float(trainer_params["max_steps"]), normalize=trainer_params["normalize"], use_recurrent=trainer_params["use_recurrent"], num_layers=int(trainer_params["num_layers"]), m_size=self.m_size, seed=seed, stream_names=list(reward_signal_configs.keys()), vis_encode_type=EncoderType( trainer_params.get("vis_encode_type", "simple") ), ) self.model.create_ppo_optimizer() # Create reward signals for reward_signal, config in reward_signal_configs.items(): self.reward_signals[reward_signal] = create_reward_signal( self, reward_signal, config ) # Create pretrainer if needed if "pretraining" in trainer_params: BCModule.check_config(trainer_params["pretraining"]) self.bc_module = BCModule( self, policy_learning_rate=trainer_params["learning_rate"], default_batch_size=trainer_params["batch_size"], default_num_epoch=trainer_params["num_epoch"], **trainer_params["pretraining"], ) else: self.bc_module = None if load: self._load_graph() else: self._initialize_graph() self.inference_dict = { "action": self.model.output, "log_probs": self.model.all_log_probs, "value": self.model.value_heads, "entropy": self.model.entropy, "learning_rate": self.model.learning_rate, } if self.use_continuous_act: self.inference_dict["pre_action"] = self.model.output_pre if self.use_recurrent: self.inference_dict["memory_out"] = self.model.memory_out if ( is_training and self.use_vec_obs and trainer_params["normalize"] and not load ): self.inference_dict["update_mean"] = self.model.update_normalization self.total_policy_loss = self.model.policy_loss self.update_dict = { "value_loss": self.model.value_loss, "policy_loss": self.total_policy_loss, "update_batch": self.model.update_batch, } @timed def evaluate(self, brain_info): """ Evaluates policy for the agent experiences provided. :param brain_info: BrainInfo object containing inputs. :return: Outputs from network as defined by self.inference_dict. """ feed_dict = { self.model.batch_size: len(brain_info.vector_observations), self.model.sequence_length: 1, } epsilon = None if self.use_recurrent: if not self.use_continuous_act: feed_dict[ self.model.prev_action ] = brain_info.previous_vector_actions.reshape( [-1, len(self.model.act_size)] ) if brain_info.memories.shape[1] == 0: brain_info.memories = self.make_empty_memory(len(brain_info.agents)) feed_dict[self.model.memory_in] = brain_info.memories if self.use_continuous_act: epsilon = np.random.normal( size=(len(brain_info.vector_observations), self.model.act_size[0]) ) feed_dict[self.model.epsilon] = epsilon feed_dict = self.fill_eval_dict(feed_dict, brain_info) run_out = self._execute_model(feed_dict, self.inference_dict) if self.use_continuous_act: run_out["random_normal_epsilon"] = epsilon return run_out @timed def update(self, mini_batch, num_sequences): """ Updates model using buffer. :param num_sequences: Number of trajectories in batch. :param mini_batch: Experience batch. :return: Output from update process. """ feed_dict = { self.model.batch_size: num_sequences, self.model.sequence_length: self.sequence_length, self.model.mask_input: mini_batch["masks"].flatten(), self.model.advantage: mini_batch["advantages"].reshape([-1, 1]), self.model.all_old_log_probs: mini_batch["action_probs"].reshape( [-1, sum(self.model.act_size)] ), } for name in self.reward_signals: feed_dict[self.model.returns_holders[name]] = mini_batch[ "{}_returns".format(name) ].flatten() feed_dict[self.model.old_values[name]] = mini_batch[ "{}_value_estimates".format(name) ].flatten() if self.use_continuous_act: feed_dict[self.model.output_pre] = mini_batch["actions_pre"].reshape( [-1, self.model.act_size[0]] ) feed_dict[self.model.epsilon] = mini_batch["random_normal_epsilon"].reshape( [-1, self.model.act_size[0]] ) else: feed_dict[self.model.action_holder] = mini_batch["actions"].reshape( [-1, len(self.model.act_size)] ) if self.use_recurrent: feed_dict[self.model.prev_action] = mini_batch["prev_action"].reshape( [-1, len(self.model.act_size)] ) feed_dict[self.model.action_masks] = mini_batch["action_mask"].reshape( [-1, sum(self.brain.vector_action_space_size)] ) if self.use_vec_obs: feed_dict[self.model.vector_in] = mini_batch["vector_obs"].reshape( [-1, self.vec_obs_size] ) if self.model.vis_obs_size > 0: for i, _ in enumerate(self.model.visual_in): _obs = mini_batch["visual_obs%d" % i] if self.sequence_length > 1 and self.use_recurrent: (_batch, _seq, _w, _h, _c) = _obs.shape feed_dict[self.model.visual_in[i]] = _obs.reshape([-1, _w, _h, _c]) else: feed_dict[self.model.visual_in[i]] = _obs if self.use_recurrent: mem_in = mini_batch["memory"][:, 0, :] feed_dict[self.model.memory_in] = mem_in run_out = self._execute_model(feed_dict, self.update_dict) return run_out def get_value_estimates( self, brain_info: BrainInfo, idx: int, done: bool ) -> Dict[str, float]: """ Generates value estimates for bootstrapping. :param brain_info: BrainInfo to be used for bootstrapping. :param idx: Index in BrainInfo of agent. :param done: Whether or not this is the last element of the episode, in which case the value estimate will be 0. :return: The value estimate dictionary with key being the name of the reward signal and the value the corresponding value estimate. """ feed_dict: Dict[tf.Tensor, Any] = { self.model.batch_size: 1, self.model.sequence_length: 1, } for i in range(len(brain_info.visual_observations)): feed_dict[self.model.visual_in[i]] = [ brain_info.visual_observations[i][idx] ] if self.use_vec_obs: feed_dict[self.model.vector_in] = [brain_info.vector_observations[idx]] if self.use_recurrent: if brain_info.memories.shape[1] == 0: brain_info.memories = self.make_empty_memory(len(brain_info.agents)) feed_dict[self.model.memory_in] = [brain_info.memories[idx]] if not self.use_continuous_act and self.use_recurrent: feed_dict[self.model.prev_action] = brain_info.previous_vector_actions[ idx ].reshape([-1, len(self.model.act_size)]) value_estimates = self.sess.run(self.model.value_heads, feed_dict) value_estimates = {k: float(v) for k, v in value_estimates.items()} # If we're done, reassign all of the value estimates that need terminal states. if done: for k in value_estimates: if self.reward_signals[k].use_terminal_states: value_estimates[k] = 0.0 return value_estimates def get_action(self, brain_info: BrainInfo) -> ActionInfo: """ Decides actions given observations information, and takes them in environment. :param brain_info: A dictionary of brain names and BrainInfo from environment. :return: an ActionInfo containing action, memories, values and an object to be passed to add experiences """ if len(brain_info.agents) == 0: return ActionInfo([], [], [], None, None) run_out = self.evaluate(brain_info) mean_values = np.mean( np.array(list(run_out.get("value").values())), axis=0 ).flatten() return ActionInfo( action=run_out.get("action"), memory=run_out.get("memory_out"), text=None, value=mean_values, outputs=run_out, )