using System; using System.Collections.Generic; using System.Linq; using NUnit.Framework; using UnityEngine; using MLAgents.InferenceBrain; namespace MLAgents.Tests { public class EditModeTestInternalBrainTensorGenerator { private class TestAgent : Agent { } private Dictionary GetFakeAgentInfos() { var goA = new GameObject("goA"); var agentA = goA.AddComponent(); var infoA = new AgentInfo() { stackedVectorObservation = (new float[] {1f, 2f, 3f}).ToList(), memories = null, storedVectorActions = new float[] {1, 2}, actionMasks = null, }; var goB = new GameObject("goB"); var agentB = goB.AddComponent(); var infoB = new AgentInfo() { stackedVectorObservation = (new float[] {4f, 5f, 6f}).ToList(), memories = (new float[] {1f, 1f, 1f}).ToList(), storedVectorActions = new float[] {3, 4}, actionMasks = new bool[] {true, false, false, false, false}, }; return new Dictionary(){{agentA, infoA},{agentB, infoB}}; } [Test] public void Contruction() { var bp = new BrainParameters(); var tensorGenerator = new TensorGenerator(bp, 0); Assert.IsNotNull(tensorGenerator); } [Test] public void GenerateBatchSize() { var inputTensor = new Tensor(); var batchSize = 4; var generator = new BatchSizeGenerator(); generator.Generate(inputTensor, batchSize, null); Assert.IsNotNull(inputTensor.Data as int[]); Assert.AreEqual((inputTensor.Data as int[])[0], batchSize); } [Test] public void GenerateSequenceLength() { var inputTensor = new Tensor(); var batchSize = 4; var generator = new SequenceLengthGenerator(); generator.Generate(inputTensor, batchSize, null); Assert.IsNotNull(inputTensor.Data as int[]); Assert.AreEqual((inputTensor.Data as int[])[0], 1); } [Test] public void GenerateVectorObservation() { var inputTensor = new Tensor() { Shape = new long[] {2, 3} }; var batchSize = 4; var agentInfos = GetFakeAgentInfos(); var generator = new VectorObservationGenerator(); generator.Generate(inputTensor, batchSize, agentInfos); Assert.IsNotNull(inputTensor.Data as float[,]); Assert.AreEqual((inputTensor.Data as float[,])[0, 0], 1); Assert.AreEqual((inputTensor.Data as float[,])[0, 2], 3); Assert.AreEqual((inputTensor.Data as float[,])[1, 0], 4); Assert.AreEqual((inputTensor.Data as float[,])[1, 2], 6); } [Test] public void GenerateRecurrentInput() { var inputTensor = new Tensor() { Shape = new long[] {2, 5} }; var batchSize = 4; var agentInfos = GetFakeAgentInfos(); var generator = new RecurrentInputGenerator(); generator.Generate(inputTensor, batchSize, agentInfos); Assert.IsNotNull(inputTensor.Data as float[,]); Assert.AreEqual((inputTensor.Data as float[,])[0, 0], 0); Assert.AreEqual((inputTensor.Data as float[,])[0, 4], 0); Assert.AreEqual((inputTensor.Data as float[,])[1, 0], 1); Assert.AreEqual((inputTensor.Data as float[,])[1, 4], 0); } [Test] public void GeneratePreviousActionInput() { var inputTensor = new Tensor() { Shape = new long[] {2, 2}, ValueType = Tensor.TensorType.FloatingPoint }; var batchSize = 4; var agentInfos = GetFakeAgentInfos(); var generator = new PreviousActionInputGenerator(); Assert.Catch( () => generator.Generate(inputTensor, batchSize, agentInfos)); inputTensor.ValueType = Tensor.TensorType.Integer; generator.Generate(inputTensor, batchSize, agentInfos); Assert.IsNotNull(inputTensor.Data as int[,]); Assert.AreEqual((inputTensor.Data as int[,])[0, 0], 1); Assert.AreEqual((inputTensor.Data as int[,])[0, 1], 2); Assert.AreEqual((inputTensor.Data as int[,])[1, 0], 3); Assert.AreEqual((inputTensor.Data as int[,])[1, 1], 4); } [Test] public void GenerateActionMaskInput() { var inputTensor = new Tensor() { Shape = new long[] {2, 5}, ValueType = Tensor.TensorType.FloatingPoint }; var batchSize = 4; var agentInfos = GetFakeAgentInfos(); var generator = new ActionMaskInputGenerator(); generator.Generate(inputTensor, batchSize, agentInfos); Assert.IsNotNull(inputTensor.Data as float[,]); Assert.AreEqual((inputTensor.Data as float[,])[0, 0], 1); Assert.AreEqual((inputTensor.Data as float[,])[0, 4], 1); Assert.AreEqual((inputTensor.Data as float[,])[1, 0], 0); Assert.AreEqual((inputTensor.Data as float[,])[1, 4], 1); } } }