from mlagents.trainers.policy import * from unittest.mock import MagicMock def basic_mock_brain(): mock_brain = MagicMock() mock_brain.vector_action_space_type = "continuous" return mock_brain def basic_params(): return {"use_recurrent": False, "model_path": "my/path"} def test_take_action_returns_empty_with_no_agents(): test_seed = 3 policy = Policy(test_seed, basic_mock_brain(), basic_params()) no_agent_brain_info = BrainInfo([], [], [], agents=[]) result = policy.get_action(no_agent_brain_info) assert result == ActionInfo([], [], [], None, None) def test_take_action_returns_nones_on_missing_values(): test_seed = 3 policy = Policy(test_seed, basic_mock_brain(), basic_params()) policy.evaluate = MagicMock(return_value={}) brain_info_with_agents = BrainInfo([], [], [], agents=["an-agent-id"]) result = policy.get_action(brain_info_with_agents) assert result == ActionInfo(None, None, None, None, {}) def test_take_action_returns_action_info_when_available(): test_seed = 3 policy = Policy(test_seed, basic_mock_brain(), basic_params()) policy_eval_out = { "action": np.array([1.0]), "memory_out": np.array([2.5]), "value": np.array([1.1]), } policy.evaluate = MagicMock(return_value=policy_eval_out) brain_info_with_agents = BrainInfo([], [], [], agents=["an-agent-id"]) result = policy.get_action(brain_info_with_agents) expected = ActionInfo( policy_eval_out["action"], policy_eval_out["memory_out"], None, policy_eval_out["value"], policy_eval_out, ) assert result == expected