import attr import pytest from typing import Dict from mlagents.trainers.settings import ( RunOptions, TrainerSettings, NetworkSettings, PPOSettings, SACSettings, RewardSignalType, RewardSignalSettings, CuriositySettings, ParameterRandomizationSettings, UniformSettings, GaussianSettings, MultiRangeUniformSettings, TrainerType, strict_to_cls, ) from mlagents.trainers.exception import TrainerConfigError def check_if_different(testobj1: object, testobj2: object) -> None: assert testobj1 is not testobj2 if attr.has(testobj1.__class__) and attr.has(testobj2.__class__): for key, val in attr.asdict(testobj1, recurse=False).items(): if isinstance(val, dict) or isinstance(val, list) or attr.has(val): # Note: this check doesn't check the contents of mutables. check_if_different(val, attr.asdict(testobj2, recurse=False)[key]) def test_is_new_instance(): """ Verify that every instance of RunOptions() and its subclasses is a new instance (i.e. all factory methods are used properly.) """ check_if_different(RunOptions(), RunOptions()) check_if_different(TrainerSettings(), TrainerSettings()) def test_no_configuration(): """ Verify that a new config will have a PPO trainer with extrinsic rewards. """ blank_runoptions = RunOptions() assert isinstance(blank_runoptions.behaviors["test"], TrainerSettings) assert isinstance(blank_runoptions.behaviors["test"].hyperparameters, PPOSettings) assert ( RewardSignalType.EXTRINSIC in blank_runoptions.behaviors["test"].reward_signals ) def test_strict_to_cls(): """ Test strict structuring method. """ @attr.s(auto_attribs=True) class TestAttrsClass: field1: int = 0 field2: str = "test" correct_dict = {"field1": 1, "field2": "test2"} assert strict_to_cls(correct_dict, TestAttrsClass) == TestAttrsClass(**correct_dict) incorrect_dict = {"field3": 1, "field2": "test2"} with pytest.raises(TrainerConfigError): strict_to_cls(incorrect_dict, TestAttrsClass) with pytest.raises(TrainerConfigError): strict_to_cls("non_dict_input", TestAttrsClass) def test_trainersettings_structure(): """ Test structuring method for TrainerSettings """ trainersettings_dict = { "trainer_type": "sac", "hyperparameters": {"batch_size": 1024}, "max_steps": 1.0, "reward_signals": {"curiosity": {"encoding_size": 64}}, } trainer_settings = TrainerSettings.structure(trainersettings_dict, TrainerSettings) assert isinstance(trainer_settings.hyperparameters, SACSettings) assert trainer_settings.trainer_type == TrainerType.SAC assert isinstance(trainer_settings.max_steps, int) assert RewardSignalType.CURIOSITY in trainer_settings.reward_signals # Check invalid trainer type with pytest.raises(ValueError): trainersettings_dict = { "trainer_type": "puppo", "hyperparameters": {"batch_size": 1024}, "max_steps": 1.0, } TrainerSettings.structure(trainersettings_dict, TrainerSettings) # Check invalid hyperparameter with pytest.raises(TrainerConfigError): trainersettings_dict = { "trainer_type": "ppo", "hyperparameters": {"notahyperparam": 1024}, "max_steps": 1.0, } TrainerSettings.structure(trainersettings_dict, TrainerSettings) # Check non-dict with pytest.raises(TrainerConfigError): TrainerSettings.structure("notadict", TrainerSettings) # Check hyperparameters specified but trainer type left as default. # This shouldn't work as you could specify non-PPO hyperparameters. with pytest.raises(TrainerConfigError): trainersettings_dict = {"hyperparameters": {"batch_size": 1024}} TrainerSettings.structure(trainersettings_dict, TrainerSettings) def test_reward_signal_structure(): """ Tests the RewardSignalSettings structure method. This one is special b/c it takes in a Dict[RewardSignalType, RewardSignalSettings]. """ reward_signals_dict = { "extrinsic": {"strength": 1.0}, "curiosity": {"strength": 1.0}, } reward_signals = RewardSignalSettings.structure( reward_signals_dict, Dict[RewardSignalType, RewardSignalSettings] ) assert isinstance(reward_signals[RewardSignalType.EXTRINSIC], RewardSignalSettings) assert isinstance(reward_signals[RewardSignalType.CURIOSITY], CuriositySettings) # Check invalid reward signal type reward_signals_dict = {"puppo": {"strength": 1.0}} with pytest.raises(ValueError): RewardSignalSettings.structure( reward_signals_dict, Dict[RewardSignalType, RewardSignalSettings] ) # Check missing GAIL demo path reward_signals_dict = {"gail": {"strength": 1.0}} with pytest.raises(TypeError): RewardSignalSettings.structure( reward_signals_dict, Dict[RewardSignalType, RewardSignalSettings] ) # Check non-Dict input with pytest.raises(TrainerConfigError): RewardSignalSettings.structure( "notadict", Dict[RewardSignalType, RewardSignalSettings] ) def test_memory_settings_validation(): with pytest.raises(TrainerConfigError): NetworkSettings.MemorySettings(sequence_length=128, memory_size=63) with pytest.raises(TrainerConfigError): NetworkSettings.MemorySettings(sequence_length=128, memory_size=0) def test_parameter_randomization_structure(): """ Tests the ParameterRandomizationSettings structure method and all validators. """ parameter_randomization_dict = { "mass": { "sampler_type": "uniform", "sampler_parameters": {"min_value": 1.0, "max_value": 2.0}, }, "scale": { "sampler_type": "gaussian", "sampler_parameters": {"mean": 1.0, "st_dev": 2.0}, }, "length": { "sampler_type": "multirangeuniform", "sampler_parameters": {"intervals": [[1.0, 2.0], [3.0, 4.0]]}, }, } parameter_randomization_distributions = ParameterRandomizationSettings.structure( parameter_randomization_dict, Dict[str, ParameterRandomizationSettings] ) assert isinstance(parameter_randomization_distributions["mass"], UniformSettings) assert isinstance(parameter_randomization_distributions["scale"], GaussianSettings) assert isinstance( parameter_randomization_distributions["length"], MultiRangeUniformSettings ) # Check invalid distribution type invalid_distribution_dict = { "mass": { "sampler_type": "beta", "sampler_parameters": {"alpha": 1.0, "beta": 2.0}, } } with pytest.raises(ValueError): ParameterRandomizationSettings.structure( invalid_distribution_dict, Dict[str, ParameterRandomizationSettings] ) # Check min less than max in uniform invalid_distribution_dict = { "mass": { "sampler_type": "uniform", "sampler_parameters": {"min_value": 2.0, "max_value": 1.0}, } } with pytest.raises(TrainerConfigError): ParameterRandomizationSettings.structure( invalid_distribution_dict, Dict[str, ParameterRandomizationSettings] ) # Check min less than max in multirange invalid_distribution_dict = { "mass": { "sampler_type": "multirangeuniform", "sampler_parameters": {"intervals": [[2.0, 1.0]]}, } } with pytest.raises(TrainerConfigError): ParameterRandomizationSettings.structure( invalid_distribution_dict, Dict[str, ParameterRandomizationSettings] ) # Check multirange has valid intervals invalid_distribution_dict = { "mass": { "sampler_type": "multirangeuniform", "sampler_parameters": {"intervals": [[1.0, 2.0], [3.0]]}, } } with pytest.raises(TrainerConfigError): ParameterRandomizationSettings.structure( invalid_distribution_dict, Dict[str, ParameterRandomizationSettings] ) # Check non-Dict input with pytest.raises(TrainerConfigError): ParameterRandomizationSettings.structure( "notadict", Dict[str, ParameterRandomizationSettings] )