import unittest.mock as mock import pytest import yaml import mlagents.trainers.tests.mock_brain as mb import numpy as np from mlagents.trainers.rl_trainer import RLTrainer @pytest.fixture def dummy_config(): return yaml.safe_load( """ summary_path: "test/" reward_signals: extrinsic: strength: 1.0 gamma: 0.99 """ ) def create_mock_brain(): mock_brain = mb.create_mock_brainparams( vector_action_space_type="continuous", vector_action_space_size=[2], vector_observation_space_size=8, number_visual_observations=1, ) return mock_brain def create_rl_trainer(): mock_brainparams = create_mock_brain() trainer = RLTrainer(mock_brainparams, dummy_config(), True, 0) return trainer def create_mock_all_brain_info(brain_info): return {"MockBrain": brain_info} def create_mock_policy(): mock_policy = mock.Mock() mock_policy.reward_signals = {} return mock_policy @mock.patch("mlagents.trainers.rl_trainer.RLTrainer.add_policy_outputs") @mock.patch("mlagents.trainers.rl_trainer.RLTrainer.add_rewards_outputs") @pytest.mark.parametrize("num_vis_obs", [0, 1], ids=["", "viz"]) def test_rl_trainer(add_policy_outputs, add_rewards_outputs, num_vis_obs): trainer = create_rl_trainer() trainer.policy = create_mock_policy() fake_action_outputs = { "action": [0.1, 0.1], "value_heads": {}, "entropy": np.array([1.0]), "learning_rate": 1.0, } mock_braininfo = mb.create_mock_braininfo( num_agents=2, num_vector_observations=8, num_vector_acts=2, num_vis_observations=num_vis_obs, ) trainer.add_experiences( create_mock_all_brain_info(mock_braininfo), create_mock_all_brain_info(mock_braininfo), fake_action_outputs, ) # Remove one of the agents next_mock_braininfo = mb.create_mock_braininfo( num_agents=1, num_vector_observations=8, num_vector_acts=2, num_vis_observations=num_vis_obs, ) brain_info = trainer.construct_curr_info(next_mock_braininfo) # assert construct_curr_info worked properly assert len(brain_info.agents) == 1 assert len(brain_info.visual_observations) == num_vis_obs assert len(brain_info.vector_observations) == 1 assert len(brain_info.previous_vector_actions) == 1 # Test end episode trainer.end_episode() for agent_id in trainer.episode_steps: assert trainer.episode_steps[agent_id] == 0 assert len(trainer.training_buffer[agent_id]["action"]) == 0 for rewards in trainer.collected_rewards.values(): for agent_id in rewards: assert rewards[agent_id] == 0