from typing import List, Dict from collections import defaultdict, Counter import numpy as np from mlagents.trainers.trainer import Trainer from mlagents.trainers.trajectory import Trajectory, AgentExperience from mlagents.trainers.brain import BrainInfo from mlagents.trainers.tf_policy import TFPolicy from mlagents.trainers.action_info import ActionInfoOutputs class AgentProcessor: """ AgentProcessor contains a dictionary per-agent trajectory buffers. The buffers are indexed by agent_id. Buffer also contains an update_buffer that corresponds to the buffer used when updating the model. One AgentProcessor should be created per agent group. """ def __init__(self, trainer: Trainer, policy: TFPolicy, max_trajectory_length: int): """ Create an AgentProcessor. :param trainer: Trainer instance connected to this AgentProcessor. Trainer is given trajectory when it is finished. :param policy: Policy instance associated with this AgentProcessor. :param max_trajectory_length: Maximum length of a trajectory before it is added to the trainer. """ self.experience_buffers: Dict[str, List[AgentExperience]] = defaultdict(list) self.last_brain_info: Dict[str, BrainInfo] = {} self.last_take_action_outputs: Dict[str, ActionInfoOutputs] = defaultdict( ActionInfoOutputs ) self.stats: Dict[str, List[float]] = defaultdict(list) # Note: this is needed until we switch to AgentExperiences as the data input type. # We still need some info from the policy (memories, previous actions) # that really should be gathered by the env-manager. self.policy = policy self.episode_steps: Counter = Counter() self.episode_rewards: Dict[str, float] = defaultdict(lambda: 0.0) if max_trajectory_length: self.max_trajectory_length = max_trajectory_length self.ignore_max_length = False else: self.max_trajectory_length = 0 self.ignore_max_length = True self.trainer = trainer def add_experiences( self, curr_info: BrainInfo, next_info: BrainInfo, take_action_outputs: ActionInfoOutputs, ) -> None: """ Adds experiences to each agent's experience history. :param curr_info: current BrainInfo. :param next_info: next BrainInfo. :param take_action_outputs: The outputs of the Policy's get_action method. """ if take_action_outputs: self.stats["Policy/Entropy"].append(take_action_outputs["entropy"].mean()) self.stats["Policy/Learning Rate"].append( take_action_outputs["learning_rate"] ) for name, values in take_action_outputs["value_heads"].items(): self.stats[name].append(np.mean(values)) for agent_id in curr_info.agents: self.last_brain_info[agent_id] = curr_info self.last_take_action_outputs[agent_id] = take_action_outputs # Store the environment reward tmp_environment_reward = np.array(next_info.rewards, dtype=np.float32) for agent_id in next_info.agents: stored_info = self.last_brain_info.get(agent_id, None) stored_take_action_outputs = self.last_take_action_outputs.get( agent_id, None ) if stored_info is not None: idx = stored_info.agents.index(agent_id) next_idx = next_info.agents.index(agent_id) obs = [] if not stored_info.local_done[idx]: for i, _ in enumerate(stored_info.visual_observations): obs.append(stored_info.visual_observations[i][idx]) if self.policy.use_vec_obs: obs.append(stored_info.vector_observations[idx]) if self.policy.use_recurrent: memory = self.policy.retrieve_memories([agent_id])[0, :] else: memory = None done = next_info.local_done[next_idx] max_step = next_info.max_reached[next_idx] # Add the outputs of the last eval action = stored_take_action_outputs["action"][idx] if self.policy.use_continuous_act: action_pre = stored_take_action_outputs["pre_action"][idx] else: action_pre = None action_probs = stored_take_action_outputs["log_probs"][idx] action_masks = stored_info.action_masks[idx] prev_action = self.policy.retrieve_previous_action([agent_id])[0, :] values = stored_take_action_outputs["value_heads"] experience = AgentExperience( obs=obs, reward=tmp_environment_reward[next_idx], done=done, action=action, action_probs=action_probs, action_pre=action_pre, action_mask=action_masks, prev_action=prev_action, max_step=max_step, memory=memory, ) # Add the value outputs if needed self.experience_buffers[agent_id].append(experience) if ( next_info.local_done[next_idx] or ( not self.ignore_max_length and len(self.experience_buffers[agent_id]) >= self.max_trajectory_length ) ) and len(self.experience_buffers[agent_id]) > 0: # Make next AgentExperience next_obs = [] for i, _ in enumerate(next_info.visual_observations): next_obs.append(next_info.visual_observations[i][next_idx]) if self.policy.use_vec_obs: next_obs.append(next_info.vector_observations[next_idx]) trajectory = Trajectory( steps=self.experience_buffers[agent_id], agent_id=agent_id, next_obs=next_obs, ) # This will eventually be replaced with a queue self.trainer.process_trajectory(trajectory) self.experience_buffers[agent_id] = [] elif not next_info.local_done[next_idx]: if agent_id not in self.episode_steps: self.episode_steps[agent_id] = 0 self.episode_steps[agent_id] += 1 self.policy.save_previous_action( curr_info.agents, take_action_outputs["action"] )