import os from typing import Dict from mlagents_envs.logging_util import get_logger from mlagents.trainers.meta_curriculum import MetaCurriculum from mlagents.trainers.exception import TrainerConfigError from mlagents.trainers.trainer import Trainer from mlagents.trainers.exception import UnityTrainerException from mlagents.trainers.ppo.trainer import PPOTrainer from mlagents.trainers.ppo_transfer.trainer import PPOTransferTrainer from mlagents.trainers.sac.trainer import SACTrainer from mlagents.trainers.sac_transfer.trainer import SACTransferTrainer from mlagents.trainers.ghost.trainer import GhostTrainer from mlagents.trainers.ghost.controller import GhostController from mlagents.trainers.settings import TrainerSettings, TrainerType logger = get_logger(__name__) class TrainerFactory: def __init__( self, trainer_config: Dict[str, TrainerSettings], output_path: str, train_model: bool, load_model: bool, seed: int, init_path: str = None, meta_curriculum: MetaCurriculum = None, multi_gpu: bool = False, ): self.trainer_config = trainer_config self.output_path = output_path self.init_path = init_path self.train_model = train_model self.load_model = load_model self.seed = seed self.meta_curriculum = meta_curriculum self.multi_gpu = multi_gpu self.ghost_controller = GhostController() def generate(self, brain_name: str) -> Trainer: return initialize_trainer( self.trainer_config[brain_name], brain_name, self.output_path, self.train_model, self.load_model, self.ghost_controller, self.seed, self.init_path, self.meta_curriculum, self.multi_gpu, ) def initialize_trainer( trainer_settings: TrainerSettings, brain_name: str, output_path: str, train_model: bool, load_model: bool, ghost_controller: GhostController, seed: int, init_path: str = None, meta_curriculum: MetaCurriculum = None, multi_gpu: bool = False, ) -> Trainer: """ Initializes a trainer given a provided trainer configuration and brain parameters, as well as some general training session options. :param trainer_settings: Original trainer configuration loaded from YAML :param brain_name: Name of the brain to be associated with trainer :param output_path: Path to save the model and summary statistics :param keep_checkpoints: How many model checkpoints to keep :param train_model: Whether to train the model (vs. run inference) :param load_model: Whether to load the model or randomly initialize :param ghost_controller: The object that coordinates ghost trainers :param seed: The random seed to use :param init_path: Path from which to load model, if different from model_path. :param meta_curriculum: Optional meta_curriculum, used to determine a reward buffer length for PPOTrainer :return: """ trainer_artifact_path = os.path.join(output_path, brain_name) if init_path is not None: trainer_settings.init_path = os.path.join(init_path, brain_name) min_lesson_length = 1 if meta_curriculum: if brain_name in meta_curriculum.brains_to_curricula: min_lesson_length = meta_curriculum.brains_to_curricula[ brain_name ].min_lesson_length else: logger.warning( f"Metacurriculum enabled, but no curriculum for brain {brain_name}. " f"Brains with curricula: {meta_curriculum.brains_to_curricula.keys()}. " ) trainer: Trainer = None # type: ignore # will be set to one of these, or raise trainer_type = trainer_settings.trainer_type if trainer_type == TrainerType.PPO: trainer = PPOTrainer( brain_name, min_lesson_length, trainer_settings, train_model, load_model, seed, trainer_artifact_path, ) elif trainer_type == TrainerType.SAC: trainer = SACTrainer( brain_name, min_lesson_length, trainer_settings, train_model, load_model, seed, trainer_artifact_path, ) elif trainer_type == TrainerType.PPO_Transfer: trainer = PPOTransferTrainer( brain_name, min_lesson_length, trainer_settings, train_model, load_model, seed, trainer_artifact_path, ) elif trainer_type == TrainerType.SAC_Transfer: trainer = SACTransferTrainer( brain_name, min_lesson_length, trainer_settings, train_model, load_model, seed, trainer_artifact_path, ) else: raise TrainerConfigError( f'The trainer config contains an unknown trainer type "{trainer_type}" for brain {brain_name}' ) if trainer_settings.self_play is not None: trainer = GhostTrainer( trainer, brain_name, ghost_controller, min_lesson_length, trainer_settings, train_model, trainer_artifact_path, ) return trainer def handle_existing_directories( output_path: str, resume: bool, force: bool, init_path: str = None ) -> None: """ Validates that if the run_id model exists, we do not overwrite it unless --force is specified. Throws an exception if resume isn't specified and run_id exists. Throws an exception if --resume is specified and run-id was not found. :param model_path: The model path specified. :param summary_path: The summary path to be used. :param resume: Whether or not the --resume flag was passed. :param force: Whether or not the --force flag was passed. """ output_path_exists = os.path.isdir(output_path) if output_path_exists: if not resume and not force: raise UnityTrainerException( "Previous data from this run ID was found. " "Either specify a new run ID, use --resume to resume this run, " "or use the --force parameter to overwrite existing data." ) else: if resume: raise UnityTrainerException( "Previous data from this run ID was not found. " "Train a new run by removing the --resume flag." ) # Verify init path if specified. if init_path is not None: if not os.path.isdir(init_path): raise UnityTrainerException( "Could not initialize from {}. " "Make sure models have already been saved with that run ID.".format( init_path ) )