import pytest import numpy as np import yaml from mlagents.trainers.ghost.trainer import GhostTrainer from mlagents.trainers.ppo.trainer import PPOTrainer from mlagents.trainers.brain import BrainParameters from mlagents.trainers.agent_processor import AgentManagerQueue from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers from mlagents.trainers.tests import mock_brain as mb from mlagents.trainers.tests.test_trajectory import make_fake_trajectory @pytest.fixture def dummy_config(): return yaml.safe_load( """ trainer: ppo batch_size: 32 beta: 5.0e-3 buffer_size: 512 epsilon: 0.2 hidden_units: 128 lambd: 0.95 learning_rate: 3.0e-4 max_steps: 5.0e4 normalize: true num_epoch: 5 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 1000 use_recurrent: false normalize: true memory_size: 8 curiosity_strength: 0.0 curiosity_enc_size: 1 summary_path: test model_path: test reward_signals: extrinsic: strength: 1.0 gamma: 0.99 self_play: window: 5 play_against_current_self_ratio: 0.5 save_steps: 1000 swap_steps: 1000 """ ) VECTOR_ACTION_SPACE = [1] VECTOR_OBS_SPACE = 8 DISCRETE_ACTION_SPACE = [3, 3, 3, 2] BUFFER_INIT_SAMPLES = 513 NUM_AGENTS = 12 @pytest.mark.parametrize("use_discrete", [True, False]) def test_load_and_set(dummy_config, use_discrete): mock_brain = mb.setup_mock_brain( use_discrete, False, vector_action_space=VECTOR_ACTION_SPACE, vector_obs_space=VECTOR_OBS_SPACE, discrete_action_space=DISCRETE_ACTION_SPACE, ) trainer_params = dummy_config trainer = PPOTrainer( mock_brain.brain_name, 0, trainer_params, True, False, 0, "0", False ) trainer.seed = 1 policy = trainer.create_policy(mock_brain) trainer.seed = 20 # otherwise graphs are the same to_load_policy = trainer.create_policy(mock_brain) to_load_policy.init_load_weights() weights = policy.get_weights() load_weights = to_load_policy.get_weights() try: for w, lw in zip(weights, load_weights): np.testing.assert_array_equal(w, lw) except AssertionError: pass to_load_policy.load_weights(weights) load_weights = to_load_policy.get_weights() for w, lw in zip(weights, load_weights): np.testing.assert_array_equal(w, lw) def test_process_trajectory(dummy_config): brain_params_team0 = BrainParameters( brain_name="test_brain?team=0", vector_observation_space_size=1, camera_resolutions=[], vector_action_space_size=[2], vector_action_descriptions=[], vector_action_space_type=0, ) brain_name = BehaviorIdentifiers.from_name_behavior_id( brain_params_team0.brain_name ).brain_name brain_params_team1 = BrainParameters( brain_name="test_brain?team=1", vector_observation_space_size=1, camera_resolutions=[], vector_action_space_size=[2], vector_action_descriptions=[], vector_action_space_type=0, ) dummy_config["summary_path"] = "./summaries/test_trainer_summary" dummy_config["model_path"] = "./models/test_trainer_models/TestModel" ppo_trainer = PPOTrainer(brain_name, 0, dummy_config, True, False, 0, "0", False) trainer = GhostTrainer(ppo_trainer, brain_name, 0, dummy_config, True, "0") # first policy encountered becomes policy trained by wrapped PPO policy = trainer.create_policy(brain_params_team0) trainer.add_policy(brain_params_team0.brain_name, policy) trajectory_queue0 = AgentManagerQueue(brain_params_team0.brain_name) trainer.subscribe_trajectory_queue(trajectory_queue0) # Ghost trainer should ignore this queue because off policy policy = trainer.create_policy(brain_params_team1) trainer.add_policy(brain_params_team1.brain_name, policy) trajectory_queue1 = AgentManagerQueue(brain_params_team1.brain_name) trainer.subscribe_trajectory_queue(trajectory_queue1) time_horizon = 15 trajectory = make_fake_trajectory( length=time_horizon, max_step_complete=True, vec_obs_size=1, num_vis_obs=0, action_space=[2], ) trajectory_queue0.put(trajectory) trainer.advance() # Check that trainer put trajectory in update buffer assert trainer.trainer.update_buffer.num_experiences == 15 trajectory_queue1.put(trajectory) trainer.advance() # Check that ghost trainer ignored off policy queue assert trainer.trainer.update_buffer.num_experiences == 15 # Check that it emptied the queue assert trajectory_queue1.empty() def test_publish_queue(dummy_config): brain_params_team0 = BrainParameters( brain_name="test_brain?team=0", vector_observation_space_size=8, camera_resolutions=[], vector_action_space_size=[1], vector_action_descriptions=[], vector_action_space_type=0, ) brain_name = BehaviorIdentifiers.from_name_behavior_id( brain_params_team0.brain_name ).brain_name brain_params_team1 = BrainParameters( brain_name="test_brain?team=1", vector_observation_space_size=8, camera_resolutions=[], vector_action_space_size=[1], vector_action_descriptions=[], vector_action_space_type=0, ) dummy_config["summary_path"] = "./summaries/test_trainer_summary" dummy_config["model_path"] = "./models/test_trainer_models/TestModel" ppo_trainer = PPOTrainer(brain_name, 0, dummy_config, True, False, 0, "0", False) trainer = GhostTrainer(ppo_trainer, brain_name, 0, dummy_config, True, "0") # First policy encountered becomes policy trained by wrapped PPO # This queue should remain empty after swap snapshot policy = trainer.create_policy(brain_params_team0) trainer.add_policy(brain_params_team0.brain_name, policy) policy_queue0 = AgentManagerQueue(brain_params_team0.brain_name) trainer.publish_policy_queue(policy_queue0) # Ghost trainer should use this queue for ghost policy swap policy = trainer.create_policy(brain_params_team1) trainer.add_policy(brain_params_team1.brain_name, policy) policy_queue1 = AgentManagerQueue(brain_params_team1.brain_name) trainer.publish_policy_queue(policy_queue1) # check ghost trainer swap pushes to ghost queue and not trainer assert policy_queue0.empty() and policy_queue1.empty() trainer._swap_snapshots() assert policy_queue0.empty() and not policy_queue1.empty() # clear policy_queue1.get_nowait() mock_brain = mb.setup_mock_brain( False, False, vector_action_space=VECTOR_ACTION_SPACE, vector_obs_space=VECTOR_OBS_SPACE, discrete_action_space=DISCRETE_ACTION_SPACE, ) buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, mock_brain) # Mock out reward signal eval buffer["extrinsic_rewards"] = buffer["environment_rewards"] buffer["extrinsic_returns"] = buffer["environment_rewards"] buffer["extrinsic_value_estimates"] = buffer["environment_rewards"] buffer["curiosity_rewards"] = buffer["environment_rewards"] buffer["curiosity_returns"] = buffer["environment_rewards"] buffer["curiosity_value_estimates"] = buffer["environment_rewards"] buffer["advantages"] = buffer["environment_rewards"] trainer.trainer.update_buffer = buffer # when ghost trainer advance and wrapped trainer buffers full # the wrapped trainer pushes updated policy to correct queue assert policy_queue0.empty() and policy_queue1.empty() trainer.advance() assert not policy_queue0.empty() and policy_queue1.empty() if __name__ == "__main__": pytest.main()