from typing import List, Tuple import numpy as np from mlagents.trainers.buffer import AgentBuffer from mlagents.trainers.torch.action_log_probs import LogProbsTuple from mlagents.trainers.trajectory import Trajectory, AgentExperience from mlagents_envs.base_env import ( DecisionSteps, TerminalSteps, ObservationSpec, BehaviorSpec, ActionSpec, ActionTuple, ) from mlagents.trainers.tests.dummy_config import create_observation_specs_with_shapes def create_mock_steps( num_agents: int, observation_specs: List[ObservationSpec], action_spec: ActionSpec, done: bool = False, ) -> Tuple[DecisionSteps, TerminalSteps]: """ Creates a mock Tuple[DecisionSteps, TerminalSteps] with observations. Imitates constant vector/visual observations, rewards, dones, and agents. :int num_agents: Number of "agents" to imitate. :List observation_specs: A List of the observation specs in your steps :int action_spec: ActionSpec for the agent :bool done: Whether all the agents in the batch are done """ obs_list = [] for obs_spec in observation_specs: obs_list.append(np.ones((num_agents,) + obs_spec.shape, dtype=np.float32)) action_mask = None if action_spec.is_discrete(): action_mask = [ np.array(num_agents * [action_size * [False]]) for action_size in action_spec.discrete_branches # type: ignore ] # type: ignore reward = np.array(num_agents * [1.0], dtype=np.float32) interrupted = np.array(num_agents * [False], dtype=np.bool) agent_id = np.arange(num_agents, dtype=np.int32) behavior_spec = BehaviorSpec(observation_specs, action_spec) if done: return ( DecisionSteps.empty(behavior_spec), TerminalSteps(obs_list, reward, interrupted, agent_id), ) else: return ( DecisionSteps(obs_list, reward, agent_id, action_mask), TerminalSteps.empty(behavior_spec), ) def create_steps_from_behavior_spec( behavior_spec: BehaviorSpec, num_agents: int = 1 ) -> Tuple[DecisionSteps, TerminalSteps]: return create_mock_steps( num_agents=num_agents, observation_specs=behavior_spec.observation_specs, action_spec=behavior_spec.action_spec, ) def make_fake_trajectory( length: int, observation_specs: List[ObservationSpec], action_spec: ActionSpec, max_step_complete: bool = False, memory_size: int = 10, ) -> Trajectory: """ Makes a fake trajectory of length length. If max_step_complete, the trajectory is terminated by a max step rather than a done. """ steps_list = [] action_size = action_spec.discrete_size + action_spec.continuous_size for _i in range(length - 1): obs = [] for obs_spec in observation_specs: obs.append(np.ones(obs_spec.shape, dtype=np.float32)) reward = 1.0 done = False action = ActionTuple( continuous=np.zeros(action_spec.continuous_size, dtype=np.float32), discrete=np.zeros(action_spec.discrete_size, dtype=np.int32), ) action_probs = LogProbsTuple( continuous=np.ones(action_spec.continuous_size, dtype=np.float32), discrete=np.ones(action_spec.discrete_size, dtype=np.float32), ) action_mask = ( [ [False for _ in range(branch)] for branch in action_spec.discrete_branches ] # type: ignore if action_spec.is_discrete() else None ) if action_spec.is_discrete(): prev_action = np.ones(action_size, dtype=np.int32) else: prev_action = np.ones(action_size, dtype=np.float32) max_step = False memory = np.ones(memory_size, dtype=np.float32) agent_id = "test_agent" behavior_id = "test_brain" experience = AgentExperience( obs=obs, reward=reward, done=done, action=action, action_probs=action_probs, action_mask=action_mask, prev_action=prev_action, interrupted=max_step, memory=memory, ) steps_list.append(experience) obs = [] for obs_spec in observation_specs: obs.append(np.ones(obs_spec.shape, dtype=np.float32)) last_experience = AgentExperience( obs=obs, reward=reward, done=not max_step_complete, action=action, action_probs=action_probs, action_mask=action_mask, prev_action=prev_action, interrupted=max_step_complete, memory=memory, ) steps_list.append(last_experience) return Trajectory( steps=steps_list, agent_id=agent_id, behavior_id=behavior_id, next_obs=obs ) def simulate_rollout( length: int, behavior_spec: BehaviorSpec, memory_size: int = 10, exclude_key_list: List[str] = None, ) -> AgentBuffer: trajectory = make_fake_trajectory( length, behavior_spec.observation_specs, action_spec=behavior_spec.action_spec, memory_size=memory_size, ) buffer = trajectory.to_agentbuffer() # If a key_list was given, remove those keys if exclude_key_list: for key in exclude_key_list: if key in buffer: buffer.pop(key) return buffer def setup_test_behavior_specs( use_discrete=True, use_visual=False, vector_action_space=2, vector_obs_space=8 ): if use_discrete: action_spec = ActionSpec.create_discrete(tuple(vector_action_space)) else: action_spec = ActionSpec.create_continuous(vector_action_space) observation_shapes = [(84, 84, 3)] * int(use_visual) + [(vector_obs_space,)] obs_spec = create_observation_specs_with_shapes(observation_shapes) behavior_spec = BehaviorSpec(obs_spec, action_spec) return behavior_spec def create_mock_3dball_behavior_specs(): return setup_test_behavior_specs( False, False, vector_action_space=2, vector_obs_space=8 ) def create_mock_pushblock_behavior_specs(): return setup_test_behavior_specs( True, False, vector_action_space=7, vector_obs_space=70 ) def create_mock_banana_behavior_specs(): return setup_test_behavior_specs( True, True, vector_action_space=[3, 3, 3, 2], vector_obs_space=0 )