using System.Collections.Generic; namespace MLAgents.InferenceBrain { /// /// Mapping between Tensor names and generators. /// A TensorGenerator implements a Dictionary of strings (node names) to an Action. /// The Action take as argument the tensor, the current batch size and a Dictionary of /// Agent to AgentInfo corresponding to the current batch. /// Each Generator reshapes and fills the data of the tensor based of the data of the batch. /// When the Tensor is an Input to the model, the shape of the Tensor will be modified /// depending on the current batch size and the data of the Tensor will be filled using the /// Dictionary of Agent to AgentInfo. /// When the Tensor is an Output of the model, only the shape of the Tensor will be modified /// using the current batch size. The data will be prefilled with zeros. /// public class TensorGenerator { public interface Generator { /// /// Modifies the data inside a Tensor according to the information contained in the /// AgentInfos contained in the current batch. /// /// The tensor the data and shape will be modified /// The number of agents present in the current batch /// Dictionary of Agent to AgentInfo containing the /// information that will be used to populate the tensor's data void Generate(Tensor tensor, int batchSize, Dictionary agentInfo); } Dictionary _dict = new Dictionary(); /// /// Returns a new TensorGenerators object. /// /// The BrainParameters used to determine what Generators will be /// used /// The seed the Generators will be initialized with. public TensorGenerator(BrainParameters bp, int seed) { // Generator for Inputs _dict[TensorNames.BatchSizePlaceholder] = new BatchSizeGenerator(); _dict[TensorNames.SequenceLengthPlaceholder] = new SequenceLengthGenerator(); _dict[TensorNames.VectorObservationPlacholder] = new VectorObservationGenerator(); _dict[TensorNames.RecurrentInPlaceholder] = new RecurrentInputGenerator(); _dict[TensorNames.PreviousActionPlaceholder] = new PreviousActionInputGenerator(); _dict[TensorNames.ActionMaskPlaceholder] = new ActionMaskInputGenerator(); _dict[TensorNames.RandomNormalEpsilonPlaceholder] = new RandomNormalInputGenerator(seed); if (bp.cameraResolutions != null) { for (var visIndex = 0; visIndex < bp.cameraResolutions.Length; visIndex++) { var index = visIndex; var bw = bp.cameraResolutions[visIndex].blackAndWhite; _dict[TensorNames.VisualObservationPlaceholderPrefix + visIndex] = new VisualObservationInputGenerator(index, bw); } } // Generators for Outputs _dict[TensorNames.ActionOutput] = new BiDimensionalOutputGenerator(); _dict[TensorNames.RecurrentOutput] = new BiDimensionalOutputGenerator(); _dict[TensorNames.ValueEstimateOutput] = new BiDimensionalOutputGenerator(); } /// /// Populates the data of the tensor inputs given the data contained in the current batch /// of agents. /// /// Enumerable of tensors that will be modified. /// The number of agents present in the current batch /// /// Dictionary of Agent to AgentInfo that contains the /// data that will be used to modify the tensors /// One of the tensor does not have an /// associated generator. public void GenerateTensors(IEnumerable tensors, int currentBatchSize, Dictionary agentInfos) { foreach (var tensor in tensors) { if (!_dict.ContainsKey(tensor.Name)) { throw new UnityAgentsException( "Unknow tensor expected as input : " + tensor.Name); } _dict[tensor.Name].Generate(tensor, currentBatchSize, agentInfos); } } } }