import numpy as np from typing import Dict, List, Mapping, NamedTuple, cast, Tuple, Optional from mlagents.torch_utils import torch, nn, default_device from mlagents_envs.logging_util import get_logger from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer from mlagents.trainers.policy.torch_policy import TorchPolicy from mlagents.trainers.settings import NetworkSettings from mlagents.trainers.torch.networks import ValueNetwork from mlagents.trainers.torch.agent_action import AgentAction from mlagents.trainers.torch.action_log_probs import ActionLogProbs from mlagents.trainers.torch.utils import ModelUtils from mlagents.trainers.buffer import AgentBuffer from mlagents_envs.timers import timed from mlagents_envs.base_env import ActionSpec, ObservationSpec from mlagents.trainers.exception import UnityTrainerException from mlagents.trainers.settings import TrainerSettings, SACSettings from contextlib import ExitStack from mlagents.trainers.trajectory import ObsUtil EPSILON = 1e-6 # Small value to avoid divide by zero logger = get_logger(__name__) class TorchSACOptimizer(TorchOptimizer): class PolicyValueNetwork(nn.Module): def __init__( self, stream_names: List[str], observation_specs: List[ObservationSpec], network_settings: NetworkSettings, action_spec: ActionSpec, ): super().__init__() num_value_outs = max(sum(action_spec.discrete_branches), 1) num_action_ins = int(action_spec.continuous_size) self.q1_network = ValueNetwork( stream_names, observation_specs, network_settings, num_action_ins, num_value_outs, ) self.q2_network = ValueNetwork( stream_names, observation_specs, network_settings, num_action_ins, num_value_outs, ) def forward( self, inputs: List[torch.Tensor], actions: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, sequence_length: int = 1, q1_grad: bool = True, q2_grad: bool = True, ) -> Tuple[Dict[str, torch.Tensor], Dict[str, torch.Tensor]]: """ Performs a forward pass on the value network, which consists of a Q1 and Q2 network. Optionally does not evaluate gradients for either the Q1, Q2, or both. :param inputs: List of observation tensors. :param actions: For a continuous Q function (has actions), tensor of actions. Otherwise, None. :param memories: Initial memories if using memory. Otherwise, None. :param sequence_length: Sequence length if using memory. :param q1_grad: Whether or not to compute gradients for the Q1 network. :param q2_grad: Whether or not to compute gradients for the Q2 network. :return: Tuple of two dictionaries, which both map {reward_signal: Q} for Q1 and Q2, respectively. """ # ExitStack allows us to enter the torch.no_grad() context conditionally with ExitStack() as stack: if not q1_grad: stack.enter_context(torch.no_grad()) q1_out, _ = self.q1_network( inputs, actions=actions, memories=memories, sequence_length=sequence_length, ) with ExitStack() as stack: if not q2_grad: stack.enter_context(torch.no_grad()) q2_out, _ = self.q2_network( inputs, actions=actions, memories=memories, sequence_length=sequence_length, ) return q1_out, q2_out class TargetEntropy(NamedTuple): discrete: List[float] = [] # One per branch continuous: float = 0.0 class LogEntCoef(nn.Module): def __init__(self, discrete, continuous): super().__init__() self.discrete = discrete self.continuous = continuous def __init__(self, policy: TorchPolicy, trainer_params: TrainerSettings): super().__init__(policy, trainer_params) hyperparameters: SACSettings = cast(SACSettings, trainer_params.hyperparameters) self.tau = hyperparameters.tau self.init_entcoef = hyperparameters.init_entcoef self.policy = policy policy_network_settings = policy.network_settings self.tau = hyperparameters.tau self.burn_in_ratio = 0.0 # Non-exposed SAC parameters self.discrete_target_entropy_scale = 0.2 # Roughly equal to e-greedy 0.05 self.continuous_target_entropy_scale = 1.0 self.stream_names = list(self.reward_signals.keys()) # Use to reduce "survivor bonus" when using Curiosity or GAIL. self.gammas = [_val.gamma for _val in trainer_params.reward_signals.values()] self.use_dones_in_backup = { name: int(not self.reward_signals[name].ignore_done) for name in self.stream_names } self._action_spec = self.policy.behavior_spec.action_spec self.value_network = TorchSACOptimizer.PolicyValueNetwork( self.stream_names, self.policy.behavior_spec.observation_specs, policy_network_settings, self._action_spec, ) self.target_network = ValueNetwork( self.stream_names, self.policy.behavior_spec.observation_specs, policy_network_settings, ) ModelUtils.soft_update( self.policy.actor_critic.critic, self.target_network, 1.0 ) # We create one entropy coefficient per action, whether discrete or continuous. _disc_log_ent_coef = torch.nn.Parameter( torch.log( torch.as_tensor( [self.init_entcoef] * len(self._action_spec.discrete_branches) ) ), requires_grad=True, ) _cont_log_ent_coef = torch.nn.Parameter( torch.log(torch.as_tensor([self.init_entcoef])), requires_grad=True ) self._log_ent_coef = TorchSACOptimizer.LogEntCoef( discrete=_disc_log_ent_coef, continuous=_cont_log_ent_coef ) _cont_target = ( -1 * self.continuous_target_entropy_scale * np.prod(self._action_spec.continuous_size).astype(np.float32) ) _disc_target = [ self.discrete_target_entropy_scale * np.log(i).astype(np.float32) for i in self._action_spec.discrete_branches ] self.target_entropy = TorchSACOptimizer.TargetEntropy( continuous=_cont_target, discrete=_disc_target ) policy_params = list(self.policy.actor_critic.network_body.parameters()) + list( self.policy.actor_critic.action_model.parameters() ) value_params = list(self.value_network.parameters()) + list( self.policy.actor_critic.critic.parameters() ) logger.debug("value_vars") for param in value_params: logger.debug(param.shape) logger.debug("policy_vars") for param in policy_params: logger.debug(param.shape) self.decay_learning_rate = ModelUtils.DecayedValue( hyperparameters.learning_rate_schedule, hyperparameters.learning_rate, 1e-10, self.trainer_settings.max_steps, ) self.policy_optimizer = torch.optim.Adam( policy_params, lr=hyperparameters.learning_rate ) self.value_optimizer = torch.optim.Adam( value_params, lr=hyperparameters.learning_rate ) self.entropy_optimizer = torch.optim.Adam( self._log_ent_coef.parameters(), lr=hyperparameters.learning_rate ) self._move_to_device(default_device()) def _move_to_device(self, device: torch.device) -> None: self._log_ent_coef.to(device) self.target_network.to(device) self.value_network.to(device) def sac_q_loss( self, q1_out: Dict[str, torch.Tensor], q2_out: Dict[str, torch.Tensor], target_values: Dict[str, torch.Tensor], dones: torch.Tensor, rewards: Dict[str, torch.Tensor], loss_masks: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: q1_losses = [] q2_losses = [] # Multiple q losses per stream for i, name in enumerate(q1_out.keys()): q1_stream = q1_out[name].squeeze() q2_stream = q2_out[name].squeeze() with torch.no_grad(): q_backup = rewards[name] + ( (1.0 - self.use_dones_in_backup[name] * dones) * self.gammas[i] * target_values[name] ) _q1_loss = 0.5 * ModelUtils.masked_mean( torch.nn.functional.mse_loss(q_backup, q1_stream), loss_masks ) _q2_loss = 0.5 * ModelUtils.masked_mean( torch.nn.functional.mse_loss(q_backup, q2_stream), loss_masks ) q1_losses.append(_q1_loss) q2_losses.append(_q2_loss) q1_loss = torch.mean(torch.stack(q1_losses)) q2_loss = torch.mean(torch.stack(q2_losses)) return q1_loss, q2_loss def sac_value_loss( self, log_probs: ActionLogProbs, values: Dict[str, torch.Tensor], q1p_out: Dict[str, torch.Tensor], q2p_out: Dict[str, torch.Tensor], loss_masks: torch.Tensor, ) -> torch.Tensor: min_policy_qs = {} with torch.no_grad(): _cont_ent_coef = self._log_ent_coef.continuous.exp() _disc_ent_coef = self._log_ent_coef.discrete.exp() for name in values.keys(): if self._action_spec.discrete_size <= 0: min_policy_qs[name] = torch.min(q1p_out[name], q2p_out[name]) else: disc_action_probs = log_probs.all_discrete_tensor.exp() _branched_q1p = ModelUtils.break_into_branches( q1p_out[name] * disc_action_probs, self._action_spec.discrete_branches, ) _branched_q2p = ModelUtils.break_into_branches( q2p_out[name] * disc_action_probs, self._action_spec.discrete_branches, ) _q1p_mean = torch.mean( torch.stack( [ torch.sum(_br, dim=1, keepdim=True) for _br in _branched_q1p ] ), dim=0, ) _q2p_mean = torch.mean( torch.stack( [ torch.sum(_br, dim=1, keepdim=True) for _br in _branched_q2p ] ), dim=0, ) min_policy_qs[name] = torch.min(_q1p_mean, _q2p_mean) value_losses = [] if self._action_spec.discrete_size <= 0: for name in values.keys(): with torch.no_grad(): v_backup = min_policy_qs[name] - torch.sum( _cont_ent_coef * log_probs.continuous_tensor, dim=1 ) value_loss = 0.5 * ModelUtils.masked_mean( torch.nn.functional.mse_loss(values[name], v_backup), loss_masks ) value_losses.append(value_loss) else: disc_log_probs = log_probs.all_discrete_tensor branched_per_action_ent = ModelUtils.break_into_branches( disc_log_probs * disc_log_probs.exp(), self._action_spec.discrete_branches, ) # We have to do entropy bonus per action branch branched_ent_bonus = torch.stack( [ torch.sum(_disc_ent_coef[i] * _lp, dim=1, keepdim=True) for i, _lp in enumerate(branched_per_action_ent) ] ) for name in values.keys(): with torch.no_grad(): v_backup = min_policy_qs[name] - torch.mean( branched_ent_bonus, axis=0 ) # Add continuous entropy bonus to minimum Q if self._action_spec.continuous_size > 0: v_backup += torch.sum( _cont_ent_coef * log_probs.continuous_tensor, dim=1, keepdim=True, ) value_loss = 0.5 * ModelUtils.masked_mean( torch.nn.functional.mse_loss(values[name], v_backup.squeeze()), loss_masks, ) value_losses.append(value_loss) value_loss = torch.mean(torch.stack(value_losses)) if torch.isinf(value_loss).any() or torch.isnan(value_loss).any(): raise UnityTrainerException("Inf found") return value_loss def sac_policy_loss( self, log_probs: ActionLogProbs, q1p_outs: Dict[str, torch.Tensor], loss_masks: torch.Tensor, ) -> torch.Tensor: _cont_ent_coef, _disc_ent_coef = ( self._log_ent_coef.continuous, self._log_ent_coef.discrete, ) _cont_ent_coef = _cont_ent_coef.exp() _disc_ent_coef = _disc_ent_coef.exp() mean_q1 = torch.mean(torch.stack(list(q1p_outs.values())), axis=0) batch_policy_loss = 0 if self._action_spec.discrete_size > 0: disc_log_probs = log_probs.all_discrete_tensor disc_action_probs = disc_log_probs.exp() branched_per_action_ent = ModelUtils.break_into_branches( disc_log_probs * disc_action_probs, self._action_spec.discrete_branches ) branched_q_term = ModelUtils.break_into_branches( mean_q1 * disc_action_probs, self._action_spec.discrete_branches ) branched_policy_loss = torch.stack( [ torch.sum(_disc_ent_coef[i] * _lp - _qt, dim=1, keepdim=False) for i, (_lp, _qt) in enumerate( zip(branched_per_action_ent, branched_q_term) ) ], dim=1, ) batch_policy_loss += torch.sum(branched_policy_loss, dim=1) all_mean_q1 = torch.sum(disc_action_probs * mean_q1, dim=1) else: all_mean_q1 = mean_q1 if self._action_spec.continuous_size > 0: cont_log_probs = log_probs.continuous_tensor batch_policy_loss += torch.mean( _cont_ent_coef * cont_log_probs - all_mean_q1.unsqueeze(1), dim=1 ) policy_loss = ModelUtils.masked_mean(batch_policy_loss, loss_masks) return policy_loss def sac_entropy_loss( self, log_probs: ActionLogProbs, loss_masks: torch.Tensor ) -> torch.Tensor: _cont_ent_coef, _disc_ent_coef = ( self._log_ent_coef.continuous, self._log_ent_coef.discrete, ) entropy_loss = 0 if self._action_spec.discrete_size > 0: with torch.no_grad(): # Break continuous into separate branch disc_log_probs = log_probs.all_discrete_tensor branched_per_action_ent = ModelUtils.break_into_branches( disc_log_probs * disc_log_probs.exp(), self._action_spec.discrete_branches, ) target_current_diff_branched = torch.stack( [ torch.sum(_lp, axis=1, keepdim=True) + _te for _lp, _te in zip( branched_per_action_ent, self.target_entropy.discrete ) ], axis=1, ) target_current_diff = torch.squeeze( target_current_diff_branched, axis=2 ) entropy_loss += -1 * ModelUtils.masked_mean( torch.mean(_disc_ent_coef * target_current_diff, axis=1), loss_masks ) if self._action_spec.continuous_size > 0: with torch.no_grad(): cont_log_probs = log_probs.continuous_tensor target_current_diff = torch.sum( cont_log_probs + self.target_entropy.continuous, dim=1 ) # We update all the _cont_ent_coef as one block entropy_loss += -1 * ModelUtils.masked_mean( _cont_ent_coef * target_current_diff, loss_masks ) return entropy_loss def _condense_q_streams( self, q_output: Dict[str, torch.Tensor], discrete_actions: torch.Tensor ) -> Dict[str, torch.Tensor]: condensed_q_output = {} onehot_actions = ModelUtils.actions_to_onehot( discrete_actions, self._action_spec.discrete_branches ) for key, item in q_output.items(): branched_q = ModelUtils.break_into_branches( item, self._action_spec.discrete_branches ) only_action_qs = torch.stack( [ torch.sum(_act * _q, dim=1, keepdim=True) for _act, _q in zip(onehot_actions, branched_q) ] ) condensed_q_output[key] = torch.mean(only_action_qs, dim=0) return condensed_q_output @timed def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]: """ Updates model using buffer. :param num_sequences: Number of trajectories in batch. :param batch: Experience mini-batch. :param update_target: Whether or not to update target value network :param reward_signal_batches: Minibatches to use for updating the reward signals, indexed by name. If none, don't update the reward signals. :return: Output from update process. """ rewards = {} for name in self.reward_signals: rewards[name] = ModelUtils.list_to_tensor(batch[f"{name}_rewards"]) n_obs = len(self.policy.behavior_spec.observation_specs) current_obs = ObsUtil.from_buffer(batch, n_obs) # Convert to tensors current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs] next_obs = ObsUtil.from_buffer_next(batch, n_obs) # Convert to tensors next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs] act_masks = ModelUtils.list_to_tensor(batch["action_mask"]) actions = AgentAction.from_dict(batch) memories_list = [ ModelUtils.list_to_tensor(batch["memory"][i]) for i in range(0, len(batch["memory"]), self.policy.sequence_length) ] # LSTM shouldn't have sequence length <1, but stop it from going out of the index if true. offset = 1 if self.policy.sequence_length > 1 else 0 next_memories_list = [ ModelUtils.list_to_tensor( batch["memory"][i][self.policy.m_size // 2 :] ) # only pass value part of memory to target network for i in range(offset, len(batch["memory"]), self.policy.sequence_length) ] if len(memories_list) > 0: memories = torch.stack(memories_list).unsqueeze(0) next_memories = torch.stack(next_memories_list).unsqueeze(0) else: memories = None next_memories = None # Q network memories are 0'ed out, since we don't have them during inference. q_memories = ( torch.zeros_like(next_memories) if next_memories is not None else None ) # Copy normalizers from policy self.value_network.q1_network.network_body.copy_normalization( self.policy.actor_critic.network_body ) self.value_network.q2_network.network_body.copy_normalization( self.policy.actor_critic.network_body ) self.target_network.network_body.copy_normalization( self.policy.actor_critic.network_body ) ( sampled_actions, log_probs, _, value_estimates, _, ) = self.policy.actor_critic.get_action_stats_and_value( current_obs, masks=act_masks, memories=memories, sequence_length=self.policy.sequence_length, ) cont_sampled_actions = sampled_actions.continuous_tensor cont_actions = actions.continuous_tensor q1p_out, q2p_out = self.value_network( current_obs, cont_sampled_actions, memories=q_memories, sequence_length=self.policy.sequence_length, q2_grad=False, ) q1_out, q2_out = self.value_network( current_obs, cont_actions, memories=q_memories, sequence_length=self.policy.sequence_length, ) if self._action_spec.discrete_size > 0: disc_actions = actions.discrete_tensor q1_stream = self._condense_q_streams(q1_out, disc_actions) q2_stream = self._condense_q_streams(q2_out, disc_actions) else: q1_stream, q2_stream = q1_out, q2_out with torch.no_grad(): target_values, _ = self.target_network( next_obs, memories=next_memories, sequence_length=self.policy.sequence_length, ) masks = ModelUtils.list_to_tensor(batch["masks"], dtype=torch.bool) dones = ModelUtils.list_to_tensor(batch["done"]) q1_loss, q2_loss = self.sac_q_loss( q1_stream, q2_stream, target_values, dones, rewards, masks ) value_loss = self.sac_value_loss( log_probs, value_estimates, q1p_out, q2p_out, masks ) policy_loss = self.sac_policy_loss(log_probs, q1p_out, masks) entropy_loss = self.sac_entropy_loss(log_probs, masks) total_value_loss = q1_loss + q2_loss + value_loss decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step()) ModelUtils.update_learning_rate(self.policy_optimizer, decay_lr) self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() ModelUtils.update_learning_rate(self.value_optimizer, decay_lr) self.value_optimizer.zero_grad() total_value_loss.backward() self.value_optimizer.step() ModelUtils.update_learning_rate(self.entropy_optimizer, decay_lr) self.entropy_optimizer.zero_grad() entropy_loss.backward() self.entropy_optimizer.step() # Update target network ModelUtils.soft_update( self.policy.actor_critic.critic, self.target_network, self.tau ) update_stats = { "Losses/Policy Loss": policy_loss.item(), "Losses/Value Loss": value_loss.item(), "Losses/Q1 Loss": q1_loss.item(), "Losses/Q2 Loss": q2_loss.item(), "Policy/Discrete Entropy Coeff": torch.mean( torch.exp(self._log_ent_coef.discrete) ).item(), "Policy/Continuous Entropy Coeff": torch.mean( torch.exp(self._log_ent_coef.continuous) ).item(), "Policy/Learning Rate": decay_lr, } return update_stats def update_reward_signals( self, reward_signal_minibatches: Mapping[str, AgentBuffer], num_sequences: int ) -> Dict[str, float]: update_stats: Dict[str, float] = {} for name, update_buffer in reward_signal_minibatches.items(): update_stats.update(self.reward_signals[name].update(update_buffer)) return update_stats def get_modules(self): modules = { "Optimizer:value_network": self.value_network, "Optimizer:target_network": self.target_network, "Optimizer:policy_optimizer": self.policy_optimizer, "Optimizer:value_optimizer": self.value_optimizer, "Optimizer:entropy_optimizer": self.entropy_optimizer, } for reward_provider in self.reward_signals.values(): modules.update(reward_provider.get_modules()) return modules