from typing import Dict, NamedTuple, List, Any, Optional, Callable, Set, Tuple import cloudpickle import enum from mlagents_envs.environment import UnityEnvironment from mlagents_envs.exception import ( UnityCommunicationException, UnityTimeOutException, UnityEnvironmentException, UnityCommunicatorStoppedException, ) from multiprocessing import Process, Pipe, Queue from multiprocessing.connection import Connection from queue import Empty as EmptyQueueException from mlagents_envs.base_env import BaseEnv, BehaviorName from mlagents_envs import logging_util from mlagents.trainers.env_manager import EnvManager, EnvironmentStep, AllStepResult from mlagents_envs.timers import ( TimerNode, timed, hierarchical_timer, reset_timers, get_timer_root, ) from mlagents.trainers.brain import BrainParameters from mlagents.trainers.settings import ParameterRandomizationSettings from mlagents.trainers.action_info import ActionInfo from mlagents_envs.side_channel.environment_parameters_channel import ( EnvironmentParametersChannel, ) from mlagents_envs.side_channel.engine_configuration_channel import ( EngineConfigurationChannel, EngineConfig, ) from mlagents_envs.side_channel.stats_side_channel import ( StatsSideChannel, StatsAggregationMethod, ) from mlagents_envs.side_channel.side_channel import SideChannel from mlagents.trainers.brain_conversion_utils import behavior_spec_to_brain_parameters logger = logging_util.get_logger(__name__) class EnvironmentCommand(enum.Enum): STEP = 1 EXTERNAL_BRAINS = 2 GET_PROPERTIES = 3 RESET = 4 CLOSE = 5 ENV_EXITED = 6 class EnvironmentRequest(NamedTuple): cmd: EnvironmentCommand payload: Any = None class EnvironmentResponse(NamedTuple): cmd: EnvironmentCommand worker_id: int payload: Any class StepResponse(NamedTuple): all_step_result: AllStepResult timer_root: Optional[TimerNode] environment_stats: Dict[str, Tuple[float, StatsAggregationMethod]] class UnityEnvWorker: def __init__(self, process: Process, worker_id: int, conn: Connection): self.process = process self.worker_id = worker_id self.conn = conn self.previous_step: EnvironmentStep = EnvironmentStep.empty(worker_id) self.previous_all_action_info: Dict[str, ActionInfo] = {} self.waiting = False def send(self, cmd: EnvironmentCommand, payload: Any = None) -> None: try: req = EnvironmentRequest(cmd, payload) self.conn.send(req) except (BrokenPipeError, EOFError): raise UnityCommunicationException("UnityEnvironment worker: send failed.") def recv(self) -> EnvironmentResponse: try: response: EnvironmentResponse = self.conn.recv() if response.cmd == EnvironmentCommand.ENV_EXITED: env_exception: Exception = response.payload raise env_exception return response except (BrokenPipeError, EOFError): raise UnityCommunicationException("UnityEnvironment worker: recv failed.") def close(self): try: self.conn.send(EnvironmentRequest(EnvironmentCommand.CLOSE)) except (BrokenPipeError, EOFError): logger.debug( f"UnityEnvWorker {self.worker_id} got exception trying to close." ) pass logger.debug(f"UnityEnvWorker {self.worker_id} joining process.") self.process.join() def worker( parent_conn: Connection, step_queue: Queue, pickled_env_factory: str, worker_id: int, engine_configuration: EngineConfig, log_level: int = logging_util.INFO, ) -> None: env_factory: Callable[ [int, List[SideChannel]], UnityEnvironment ] = cloudpickle.loads(pickled_env_factory) env_parameters = EnvironmentParametersChannel() engine_configuration_channel = EngineConfigurationChannel() engine_configuration_channel.set_configuration(engine_configuration) stats_channel = StatsSideChannel() env: BaseEnv = None # Set log level. On some platforms, the logger isn't common with the # main process, so we need to set it again. logging_util.set_log_level(log_level) def _send_response(cmd_name: EnvironmentCommand, payload: Any) -> None: parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload)) def _generate_all_results() -> AllStepResult: all_step_result: AllStepResult = {} for brain_name in env.behavior_specs: all_step_result[brain_name] = env.get_steps(brain_name) return all_step_result def external_brains(): result = {} for behavior_name, behavior_specs in env.behavior_specs.items(): result[behavior_name] = behavior_spec_to_brain_parameters( behavior_name, behavior_specs ) return result try: env = env_factory( worker_id, [env_parameters, engine_configuration_channel, stats_channel] ) while True: req: EnvironmentRequest = parent_conn.recv() if req.cmd == EnvironmentCommand.STEP: all_action_info = req.payload for brain_name, action_info in all_action_info.items(): if len(action_info.action) != 0: env.set_actions(brain_name, action_info.action) env.step() all_step_result = _generate_all_results() # The timers in this process are independent from all the processes and the "main" process # So after we send back the root timer, we can safely clear them. # Note that we could randomly return timers a fraction of the time if we wanted to reduce # the data transferred. # TODO get gauges from the workers and merge them in the main process too. env_stats = stats_channel.get_and_reset_stats() step_response = StepResponse( all_step_result, get_timer_root(), env_stats ) step_queue.put( EnvironmentResponse( EnvironmentCommand.STEP, worker_id, step_response ) ) reset_timers() elif req.cmd == EnvironmentCommand.EXTERNAL_BRAINS: _send_response(EnvironmentCommand.EXTERNAL_BRAINS, external_brains()) elif req.cmd == EnvironmentCommand.RESET: for k, v in req.payload.items(): if isinstance(v, float): env_parameters.set_float_parameter(k, v) elif isinstance(v, ParameterRandomizationSettings): v.apply(k, env_parameters) env.reset() all_step_result = _generate_all_results() _send_response(EnvironmentCommand.RESET, all_step_result) elif req.cmd == EnvironmentCommand.CLOSE: break except ( KeyboardInterrupt, UnityCommunicationException, UnityTimeOutException, UnityEnvironmentException, UnityCommunicatorStoppedException, ) as ex: logger.info(f"UnityEnvironment worker {worker_id}: environment stopping.") step_queue.put( EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex) ) _send_response(EnvironmentCommand.ENV_EXITED, ex) finally: # If this worker has put an item in the step queue that hasn't been processed by the EnvManager, the process # will hang until the item is processed. We avoid this behavior by using Queue.cancel_join_thread() # See https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue.cancel_join_thread for # more info. logger.debug(f"UnityEnvironment worker {worker_id} closing.") step_queue.cancel_join_thread() step_queue.close() if env is not None: env.close() logger.debug(f"UnityEnvironment worker {worker_id} done.") class SubprocessEnvManager(EnvManager): def __init__( self, env_factory: Callable[[int, List[SideChannel]], BaseEnv], engine_configuration: EngineConfig, n_env: int = 1, ): super().__init__() self.env_workers: List[UnityEnvWorker] = [] self.step_queue: Queue = Queue() for worker_idx in range(n_env): self.env_workers.append( self.create_worker( worker_idx, self.step_queue, env_factory, engine_configuration ) ) @staticmethod def create_worker( worker_id: int, step_queue: Queue, env_factory: Callable[[int, List[SideChannel]], BaseEnv], engine_configuration: EngineConfig, ) -> UnityEnvWorker: parent_conn, child_conn = Pipe() # Need to use cloudpickle for the env factory function since function objects aren't picklable # on Windows as of Python 3.6. pickled_env_factory = cloudpickle.dumps(env_factory) child_process = Process( target=worker, args=( child_conn, step_queue, pickled_env_factory, worker_id, engine_configuration, logger.level, ), ) child_process.start() return UnityEnvWorker(child_process, worker_id, parent_conn) def _queue_steps(self) -> None: for env_worker in self.env_workers: if not env_worker.waiting: env_action_info = self._take_step(env_worker.previous_step) env_worker.previous_all_action_info = env_action_info env_worker.send(EnvironmentCommand.STEP, env_action_info) env_worker.waiting = True def _step(self) -> List[EnvironmentStep]: # Queue steps for any workers which aren't in the "waiting" state. self._queue_steps() worker_steps: List[EnvironmentResponse] = [] step_workers: Set[int] = set() # Poll the step queue for completed steps from environment workers until we retrieve # 1 or more, which we will then return as StepInfos while len(worker_steps) < 1: try: while True: step: EnvironmentResponse = self.step_queue.get_nowait() if step.cmd == EnvironmentCommand.ENV_EXITED: env_exception: Exception = step.payload raise env_exception self.env_workers[step.worker_id].waiting = False if step.worker_id not in step_workers: worker_steps.append(step) step_workers.add(step.worker_id) except EmptyQueueException: pass step_infos = self._postprocess_steps(worker_steps) return step_infos def _reset_env(self, config: Optional[Dict] = None) -> List[EnvironmentStep]: while any(ew.waiting for ew in self.env_workers): if not self.step_queue.empty(): step = self.step_queue.get_nowait() self.env_workers[step.worker_id].waiting = False # First enqueue reset commands for all workers so that they reset in parallel for ew in self.env_workers: ew.send(EnvironmentCommand.RESET, config) # Next (synchronously) collect the reset observations from each worker in sequence for ew in self.env_workers: ew.previous_step = EnvironmentStep(ew.recv().payload, ew.worker_id, {}, {}) return list(map(lambda ew: ew.previous_step, self.env_workers)) @property def external_brains(self) -> Dict[BehaviorName, BrainParameters]: self.env_workers[0].send(EnvironmentCommand.EXTERNAL_BRAINS) return self.env_workers[0].recv().payload def close(self) -> None: logger.debug("SubprocessEnvManager closing.") self.step_queue.close() self.step_queue.join_thread() for env_worker in self.env_workers: env_worker.close() def _postprocess_steps( self, env_steps: List[EnvironmentResponse] ) -> List[EnvironmentStep]: step_infos = [] timer_nodes = [] for step in env_steps: payload: StepResponse = step.payload env_worker = self.env_workers[step.worker_id] new_step = EnvironmentStep( payload.all_step_result, step.worker_id, env_worker.previous_all_action_info, payload.environment_stats, ) step_infos.append(new_step) env_worker.previous_step = new_step if payload.timer_root: timer_nodes.append(payload.timer_root) if timer_nodes: with hierarchical_timer("workers") as main_timer_node: for worker_timer_node in timer_nodes: main_timer_node.merge( worker_timer_node, root_name="worker_root", is_parallel=True ) return step_infos @timed def _take_step(self, last_step: EnvironmentStep) -> Dict[BehaviorName, ActionInfo]: all_action_info: Dict[str, ActionInfo] = {} for brain_name, step_tuple in last_step.current_all_step_result.items(): if brain_name in self.policies: all_action_info[brain_name] = self.policies[brain_name].get_action( step_tuple[0], last_step.worker_id ) return all_action_info