import threading from mlagents.torch_utils import torch from mlagents_envs.logging_util import get_logger from mlagents.trainers.settings import SerializationSettings logger = get_logger(__name__) class exporting_to_onnx: """ Set this context by calling ``` with exporting_to_onnx(): ``` Within this context, the variable exporting_to_onnx.is_exporting() will be true. This implementation is thread safe. """ # local is_exporting flag for each thread _local_data = threading.local() _local_data._is_exporting = False # global lock shared among all threads, to make sure only one thread is exporting at a time _lock = threading.Lock() def __enter__(self): self._lock.acquire() self._local_data._is_exporting = True def __exit__(self, *args): self._local_data._is_exporting = False self._lock.release() @staticmethod def is_exporting(): if not hasattr(exporting_to_onnx._local_data, "_is_exporting"): return False return exporting_to_onnx._local_data._is_exporting class ModelSerializer: def __init__(self, policy): # ONNX only support input in NCHW (channel first) format. # Barracuda also expect to get data in NCHW. # Any multi-dimentional input should follow that otherwise will # cause problem to barracuda import. self.policy = policy observation_specs = self.policy.behavior_spec.observation_specs batch_dim = [1] seq_len_dim = [1] vec_obs_size = 0 for obs_spec in observation_specs: if len(obs_spec.shape) == 1: vec_obs_size += obs_spec.shape[0] num_vis_obs = sum( 1 for obs_spec in observation_specs if len(obs_spec.shape) == 3 ) dummy_vec_obs = [torch.zeros(batch_dim + [vec_obs_size])] # create input shape of NCHW # (It's NHWC in observation_specs.shape) dummy_vis_obs = [ torch.zeros( batch_dim + [obs_spec.shape[2], obs_spec.shape[0], obs_spec.shape[1]] ) for obs_spec in observation_specs if len(obs_spec.shape) == 3 ] dummy_var_len_obs = [ torch.zeros(batch_dim + [obs_spec.shape[0], obs_spec.shape[1]]) for obs_spec in observation_specs if len(obs_spec.shape) == 2 ] dummy_masks = torch.ones( batch_dim + [sum(self.policy.behavior_spec.action_spec.discrete_branches)] ) dummy_memories = torch.zeros( batch_dim + seq_len_dim + [self.policy.export_memory_size] ) self.dummy_input = ( dummy_vec_obs, dummy_vis_obs, dummy_var_len_obs, dummy_masks, dummy_memories, ) self.input_names = ["vector_observation"] for i in range(num_vis_obs): self.input_names.append(f"visual_observation_{i}") for i, obs_spec in enumerate(observation_specs): if len(obs_spec.shape) == 2: self.input_names.append(f"obs_{i}") self.input_names += ["action_masks", "memories"] self.dynamic_axes = {name: {0: "batch"} for name in self.input_names} self.output_names = ["version_number", "memory_size"] if self.policy.behavior_spec.action_spec.continuous_size > 0: self.output_names += [ "continuous_actions", "continuous_action_output_shape", ] self.dynamic_axes.update({"continuous_actions": {0: "batch"}}) if self.policy.behavior_spec.action_spec.discrete_size > 0: self.output_names += ["discrete_actions", "discrete_action_output_shape"] self.dynamic_axes.update({"discrete_actions": {0: "batch"}}) if ( self.policy.behavior_spec.action_spec.continuous_size == 0 or self.policy.behavior_spec.action_spec.discrete_size == 0 ): self.output_names += [ "action", "is_continuous_control", "action_output_shape", ] self.dynamic_axes.update({"action": {0: "batch"}}) def export_policy_model(self, output_filepath: str) -> None: """ Exports a Torch model for a Policy to .onnx format for Unity embedding. :param output_filepath: file path to output the model (without file suffix) """ onnx_output_path = f"{output_filepath}.onnx" logger.info(f"Converting to {onnx_output_path}") with exporting_to_onnx(): torch.onnx.export( self.policy.actor, self.dummy_input, onnx_output_path, opset_version=SerializationSettings.onnx_opset, input_names=self.input_names, output_names=self.output_names, dynamic_axes=self.dynamic_axes, ) logger.info(f"Exported {onnx_output_path}")