from typing import Dict, Optional, Tuple, List from mlagents.torch_utils import torch import numpy as np from mlagents.trainers.buffer import AgentBuffer, AgentBufferField from mlagents.trainers.trajectory import ObsUtil from mlagents.trainers.torch.components.bc.module import BCModule from mlagents.trainers.torch.components.reward_providers import create_reward_provider from mlagents.trainers.policy.torch_policy import TorchPolicy from mlagents.trainers.optimizer import Optimizer from mlagents.trainers.settings import TrainerSettings from mlagents.trainers.torch.utils import ModelUtils class TorchOptimizer(Optimizer): def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings): super().__init__() self.policy = policy self.trainer_settings = trainer_settings self.update_dict: Dict[str, torch.Tensor] = {} self.value_heads: Dict[str, torch.Tensor] = {} self.memory_in: torch.Tensor = None self.memory_out: torch.Tensor = None self.m_size: int = 0 self.global_step = torch.tensor(0) self.bc_module: Optional[BCModule] = None self.create_reward_signals(trainer_settings.reward_signals) self.critic_memory_dict: Dict[str, torch.Tensor] = {} if trainer_settings.behavioral_cloning is not None: self.bc_module = BCModule( self.policy, trainer_settings.behavioral_cloning, policy_learning_rate=trainer_settings.hyperparameters.learning_rate, default_batch_size=trainer_settings.hyperparameters.batch_size, default_num_epoch=3, ) @property def critic(self): raise NotImplementedError def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]: pass def create_reward_signals(self, reward_signal_configs): """ Create reward signals :param reward_signal_configs: Reward signal config. """ for reward_signal, settings in reward_signal_configs.items(): # Name reward signals by string in case we have duplicates later self.reward_signals[reward_signal.value] = create_reward_provider( reward_signal, self.policy.behavior_spec, settings ) def get_trajectory_value_estimates( self, batch: AgentBuffer, next_obs: List[np.ndarray], done: bool, agent_id: str = "", ) -> Tuple[Dict[str, np.ndarray], Dict[str, float], Optional[AgentBufferField]]: n_obs = len(self.policy.behavior_spec.observation_specs) if agent_id in self.critic_memory_dict: memory = self.critic_memory_dict[agent_id] else: memory = ( torch.zeros((1, 1, self.critic.memory_size)) if self.policy.use_recurrent else None ) # If we're using LSTM, we want to get all the intermediate memories. all_next_memories: Optional[AgentBufferField] = None if self.policy.use_recurrent: resequenced_buffer = AgentBuffer() all_next_memories = AgentBufferField() # The 1st sequence are the ones that are padded. So if seq_len = 3 and # trajectory is of length 10, the ist sequence is [pad,pad,obs]. # Compute the number of elements in this padded seq. leftover = batch.num_experiences % self.policy.sequence_length first_seq_len = self.policy.sequence_length if leftover == 0 else leftover for _ in range(first_seq_len): all_next_memories.append(memory.squeeze().detach().numpy()) batch.resequence_and_append( resequenced_buffer, training_length=self.policy.sequence_length ) reseq_obs = ObsUtil.from_buffer(resequenced_buffer, n_obs) reseq_obs = [ModelUtils.list_to_tensor(obs) for obs in reseq_obs] # By now, the buffer should be of length seq_len * num_seq, padded _mem = memory for seq_num in range( resequenced_buffer.num_experiences // self.policy.sequence_length - 1 ): seq_obs = [] for _obs in reseq_obs: start = seq_num * self.policy.sequence_length end = (seq_num + 1) * self.policy.sequence_length seq_obs.append(_obs[start:end]) _, next_seq_mem = self.critic.critic_pass( seq_obs, _mem, sequence_length=self.policy.sequence_length ) for _ in range(self.policy.sequence_length): all_next_memories.append(next_seq_mem.squeeze().detach().numpy()) # Convert to tensors current_obs = ObsUtil.from_buffer(batch, n_obs) current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs] next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs] next_obs = [obs.unsqueeze(0) for obs in next_obs] value_estimates, next_memory = self.critic.critic_pass( current_obs, memory, sequence_length=batch.num_experiences ) # Store the memory for the next trajectory self.critic_memory_dict[agent_id] = next_memory next_value_estimate, _ = self.critic.critic_pass( next_obs, next_memory, sequence_length=1 ) for name, estimate in value_estimates.items(): value_estimates[name] = ModelUtils.to_numpy(estimate) next_value_estimate[name] = ModelUtils.to_numpy(next_value_estimate[name]) if done: for k in next_value_estimate: if not self.reward_signals[k].ignore_done: next_value_estimate[k] = 0.0 if agent_id in self.critic_memory_dict: self.critic_memory_dict.pop(agent_id) return value_estimates, next_value_estimate, all_next_memories