# Unity ML-Agents Toolkit (Beta)
[![docs badge](https://img.shields.io/badge/docs-reference-blue.svg)](https://github.com/Unity-Technologies/ml-agents/tree/latest_release/docs/)
[![license badge](https://img.shields.io/badge/license-Apache--2.0-green.svg)](LICENSE)
([latest release](https://github.com/Unity-Technologies/ml-agents/releases/tag/latest_release))
([all releases](https://github.com/Unity-Technologies/ml-agents/releases))
**The Unity Machine Learning Agents Toolkit** (ML-Agents) is an open-source
Unity plugin that enables games and simulations to serve as environments for
training intelligent agents. Agents can be trained using reinforcement learning,
imitation learning, neuroevolution, or other machine learning methods through a
simple-to-use Python API. We also provide implementations (based on TensorFlow)
of state-of-the-art algorithms to enable game developers and hobbyists to easily
train intelligent agents for 2D, 3D and VR/AR games. These trained agents can be
used for multiple purposes, including controlling NPC behavior (in a variety of
settings such as multi-agent and adversarial), automated testing of game builds
and evaluating different game design decisions pre-release. The ML-Agents
Toolkit is mutually beneficial for both game developers and AI researchers as it
provides a central platform where advances in AI can be evaluated on Unity’s
rich environments and then made accessible to the wider research and game
developer communities.
## Features
* Unity environment control from Python
* 15+ sample Unity environments
* Two deep reinforcement learning algorithms,
[Proximal Policy Optimization](https://github.com/Unity-Technologies/ml-agents/tree/latest_release/docs/Training-PPO.md)
(PPO) and [Soft Actor-Critic](https://github.com/Unity-Technologies/ml-agents/tree/latest_release/docs/Training-SAC.md)
(SAC)
* Support for multiple environment configurations and training scenarios
* Self-play mechanism for training agents in adversarial scenarios
* Train memory-enhanced agents using deep reinforcement learning
* Easily definable Curriculum Learning and Generalization scenarios
* Built-in support for Imitation Learning
* Flexible agent control with On Demand Decision Making
* Visualizing network outputs within the environment
* Wrap learning environments as a gym
* Utilizes the Unity Inference Engine
* Train using concurrent Unity environment instances
## Releases & Documentation
**Our latest, stable release is 0.14.1. Click
[here](https://github.com/Unity-Technologies/ml-agents/tree/latest_release/docs/Readme.md) to
get started with the latest release of ML-Agents.**
The table below lists all our releases, including our `master` branch which is under active
development and may be unstable. A few helpful guidelines:
* The docs links in the table below include installation and usage instructions specific to each
release. Remember to always use the documentation that corresponds to the release version you're
using.
* See the [GitHub releases](https://github.com/Unity-Technologies/ml-agents/releases) for more
details of the changes between versions.
* If you have used an earlier version of the ML-Agents Toolkit, we strongly recommend our
[guide on migrating from earlier versions](docs/Migrating.md).
| **Version** | **Release Date** | **Source** | **Documentation** | **Download** |
|:-------:|:------:|:-------------:|:-------:|:------------:|
| **master** (unstable) | -- | [source](https://github.com/Unity-Technologies/ml-agents/tree/master) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/master/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/master.zip) |
| **0.14.1** (latest stable release) | February 26, 2020 | **[source](https://github.com/Unity-Technologies/ml-agents/tree/latest_release)** | **[docs](https://github.com/Unity-Technologies/ml-agents/tree/latest_release/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/latest_release.zip)** |
| **0.14.0** | February 13, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/0.14.0) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/0.14.0/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/0.14.0.zip) |
| **0.13.1** | January 21, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/0.13.1) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/0.13.1/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/0.13.1.zip) |
| **0.13.0** | January 8, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/0.13.0) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/0.13.0/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/0.13.0.zip) |
| **0.12.1** | December 11, 2019 | [source](https://github.com/Unity-Technologies/ml-agents/tree/0.12.1) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/0.12.1/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/0.12.1.zip) |
| **0.12.0** | December 2, 2019 | [source](https://github.com/Unity-Technologies/ml-agents/tree/0.12.0) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/0.12.0/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/0.12.0.zip) |
| **0.11.0** | November 4, 2019 | [source](https://github.com/Unity-Technologies/ml-agents/tree/0.11.0) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/0.11.0/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/0.11.0.zip) |
| **0.10.1** | October 9, 2019 | [source](https://github.com/Unity-Technologies/ml-agents/tree/0.10.1) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/0.10.1/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/0.10.1.zip) |
| **0.10.0** | September 30, 2019 | [source](https://github.com/Unity-Technologies/ml-agents/tree/0.10.0) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/0.10.0/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/0.10.0.zip) |
## Citation
If you are a researcher interested in a discussion of Unity as an AI platform, see a pre-print
of our [reference paper on Unity and the ML-Agents Toolkit](https://arxiv.org/abs/1809.02627).
If you use Unity or the ML-Agents Toolkit to conduct research, we ask that you cite the following
paper as a reference:
Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange, D. (2018). Unity: A General Platform for Intelligent Agents. *arXiv preprint arXiv:1809.02627.* https://github.com/Unity-Technologies/ml-agents.
## Additional Resources
We have published a series of blog posts that are relevant for ML-Agents:
* (February 28, 2020) [Training intelligent adversaries using self-play with ML-Agents](https://blogs.unity3d.com/2020/02/28/training-intelligent-adversaries-using-self-play-with-ml-agents/)
* (November 11, 2019) [Training your agents 7 times faster with ML-Agents](https://blogs.unity3d.com/2019/11/11/training-your-agents-7-times-faster-with-ml-agents/)
* (October 21, 2019) [The AI@Unity interns help shape the world](https://blogs.unity3d.com/2019/10/21/the-aiunity-interns-help-shape-the-world/)
* (April 15, 2019) [Unity ML-Agents Toolkit v0.8: Faster training on real games](https://blogs.unity3d.com/2019/04/15/unity-ml-agents-toolkit-v0-8-faster-training-on-real-games/)
* (March 1, 2019) [Unity ML-Agents Toolkit v0.7: A leap towards cross-platform inference](https://blogs.unity3d.com/2019/03/01/unity-ml-agents-toolkit-v0-7-a-leap-towards-cross-platform-inference/)
* (December 17, 2018) [ML-Agents Toolkit v0.6: Improved usability of Brains and Imitation Learning](https://blogs.unity3d.com/2018/12/17/ml-agents-toolkit-v0-6-improved-usability-of-brains-and-imitation-learning/)
* (October 2, 2018) [Puppo, The Corgi: Cuteness Overload with the Unity ML-Agents Toolkit](https://blogs.unity3d.com/2018/10/02/puppo-the-corgi-cuteness-overload-with-the-unity-ml-agents-toolkit/)
* (September 11, 2018) [ML-Agents Toolkit v0.5, new resources for AI researchers available now](https://blogs.unity3d.com/2018/09/11/ml-agents-toolkit-v0-5-new-resources-for-ai-researchers-available-now/)
* (June 26, 2018) [Solving sparse-reward tasks with Curiosity](https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/)
* (June 19, 2018) [Unity ML-Agents Toolkit v0.4 and Udacity Deep Reinforcement Learning Nanodegree](https://blogs.unity3d.com/2018/06/19/unity-ml-agents-toolkit-v0-4-and-udacity-deep-reinforcement-learning-nanodegree/)
* (May 24, 2018) [Imitation Learning in Unity: The Workflow](https://blogs.unity3d.com/2018/05/24/imitation-learning-in-unity-the-workflow/)
* (March 15, 2018) [ML-Agents Toolkit v0.3 Beta released: Imitation Learning, feedback-driven features, and more](https://blogs.unity3d.com/2018/03/15/ml-agents-v0-3-beta-released-imitation-learning-feedback-driven-features-and-more/)
* (December 11, 2017) [Using Machine Learning Agents in a real game: a beginner’s guide](https://blogs.unity3d.com/2017/12/11/using-machine-learning-agents-in-a-real-game-a-beginners-guide/)
* (December 8, 2017) [Introducing ML-Agents Toolkit v0.2: Curriculum Learning, new environments, and more](https://blogs.unity3d.com/2017/12/08/introducing-ml-agents-v0-2-curriculum-learning-new-environments-and-more/)
* (September 19, 2017) [Introducing: Unity Machine Learning Agents Toolkit](https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/)
* Overviewing reinforcement learning concepts
([multi-armed bandit](https://blogs.unity3d.com/2017/06/26/unity-ai-themed-blog-entries/)
and
[Q-learning](https://blogs.unity3d.com/2017/08/22/unity-ai-reinforcement-learning-with-q-learning/))
In addition to our own documentation, here are some additional, relevant articles:
* [A Game Developer Learns Machine Learning](https://mikecann.co.uk/machine-learning/a-game-developer-learns-machine-learning-intent/)
* [Explore Unity Technologies ML-Agents Exclusively on Intel Architecture](https://software.intel.com/en-us/articles/explore-unity-technologies-ml-agents-exclusively-on-intel-architecture)
* [ML-Agents Penguins tutorial](https://learn.unity.com/project/ml-agents-penguins)
## Community and Feedback
The ML-Agents Toolkit is an open-source project and we encourage and welcome
contributions. If you wish to contribute, be sure to review our
[contribution guidelines](com.unity.ml-agents/CONTRIBUTING.md) and
[code of conduct](CODE_OF_CONDUCT.md).
For problems with the installation and setup of the the ML-Agents Toolkit, or
discussions about how to best setup or train your agents, please create a new
thread on the [Unity ML-Agents forum](https://forum.unity.com/forums/ml-agents.453/)
and make sure to include as much detail as possible.
If you run into any other problems using the ML-Agents Toolkit, or have a specific
feature requests, please [submit a GitHub issue](https://github.com/Unity-Technologies/ml-agents/issues).
Your opinion matters a great deal to us. Only by hearing your thoughts on the Unity ML-Agents
Toolkit can we continue to improve and grow. Please take a few minutes to
[let us know about it](https://github.com/Unity-Technologies/ml-agents/issues/1454).
For any other questions or feedback, connect directly with the ML-Agents
team at ml-agents@unity3d.com.
## License
[Apache License 2.0](LICENSE)