using System.Collections.Generic; using Unity.MLAgents.Sensors; using UnityEngine; namespace Unity.MLAgents.Extensions.Match3 { /// /// Type of observations to generate. /// /// public enum Match3ObservationType { /// /// Generate a one-hot encoding of the cell type for each cell on the board. If there are special types, /// these will also be one-hot encoded. /// Vector, /// /// Generate a one-hot encoding of the cell type for each cell on the board, but arranged as /// a Rows x Columns visual observation. If there are special types, these will also be one-hot encoded. /// UncompressedVisual, /// /// Generate a one-hot encoding of the cell type for each cell on the board, but arranged as /// a Rows x Columns visual observation. If there are special types, these will also be one-hot encoded. /// During training, these will be sent as a concatenated series of PNG images, with 3 channels per image. /// CompressedVisual } /// /// Sensor for Match3 games. Can generate either vector, compressed visual, /// or uncompressed visual observations. Uses AbstractBoard.GetCellType() /// and AbstractBoard.GetSpecialType() to determine the observation values. /// public class Match3Sensor : ISparseChannelSensor, IBuiltInSensor { private Match3ObservationType m_ObservationType; private AbstractBoard m_Board; private ObservationSpec m_ObservationSpec; private int[] m_SparseChannelMapping; private string m_Name; private int m_Rows; private int m_Columns; private int m_NumCellTypes; private int m_NumSpecialTypes; private ISparseChannelSensor sparseChannelSensorImplementation; private int SpecialTypeSize { get { return m_NumSpecialTypes == 0 ? 0 : m_NumSpecialTypes + 1; } } /// /// Create a sensor for the board with the specified observation type. /// /// /// /// public Match3Sensor(AbstractBoard board, Match3ObservationType obsType, string name) { m_Board = board; m_Name = name; m_Rows = board.Rows; m_Columns = board.Columns; m_NumCellTypes = board.NumCellTypes; m_NumSpecialTypes = board.NumSpecialTypes; m_ObservationType = obsType; m_ObservationSpec = obsType == Match3ObservationType.Vector ? ObservationSpec.FromShape(m_Rows * m_Columns * (m_NumCellTypes + SpecialTypeSize)) : ObservationSpec.FromShape(m_Rows, m_Columns, m_NumCellTypes + SpecialTypeSize); // See comment in GetCompressedObservation() var cellTypePaddedSize = 3 * ((m_NumCellTypes + 2) / 3); m_SparseChannelMapping = new int[cellTypePaddedSize + SpecialTypeSize]; // If we have 4 cell types and 2 special types (3 special size), we'd have // [0, 1, 2, 3, -1, -1, 4, 5, 6] for (var i = 0; i < m_NumCellTypes; i++) { m_SparseChannelMapping[i] = i; } for (var i = m_NumCellTypes; i < cellTypePaddedSize; i++) { m_SparseChannelMapping[i] = -1; } for (var i = 0; i < SpecialTypeSize; i++) { m_SparseChannelMapping[cellTypePaddedSize + i] = i + m_NumCellTypes; } } /// public ObservationSpec GetObservationSpec() { return m_ObservationSpec; } /// public int Write(ObservationWriter writer) { if (m_Board.Rows != m_Rows || m_Board.Columns != m_Columns || m_Board.NumCellTypes != m_NumCellTypes) { Debug.LogWarning( $"Board shape changes since sensor initialization. This may cause unexpected results. " + $"Old shape: Rows={m_Rows} Columns={m_Columns}, NumCellTypes={m_NumCellTypes} " + $"Current shape: Rows={m_Board.Rows} Columns={m_Board.Columns}, NumCellTypes={m_Board.NumCellTypes}" ); } if (m_ObservationType == Match3ObservationType.Vector) { int offset = 0; for (var r = 0; r < m_Rows; r++) { for (var c = 0; c < m_Columns; c++) { var val = m_Board.GetCellType(r, c); for (var i = 0; i < m_NumCellTypes; i++) { writer[offset] = (i == val) ? 1.0f : 0.0f; offset++; } if (m_NumSpecialTypes > 0) { var special = m_Board.GetSpecialType(r, c); for (var i = 0; i < SpecialTypeSize; i++) { writer[offset] = (i == special) ? 1.0f : 0.0f; offset++; } } } } return offset; } else { // TODO combine loops? Only difference is inner-most statement. int offset = 0; for (var r = 0; r < m_Rows; r++) { for (var c = 0; c < m_Columns; c++) { var val = m_Board.GetCellType(r, c); for (var i = 0; i < m_NumCellTypes; i++) { writer[r, c, i] = (i == val) ? 1.0f : 0.0f; offset++; } if (m_NumSpecialTypes > 0) { var special = m_Board.GetSpecialType(r, c); for (var i = 0; i < SpecialTypeSize; i++) { writer[offset] = (i == special) ? 1.0f : 0.0f; offset++; } } } } return offset; } } /// public byte[] GetCompressedObservation() { var height = m_Rows; var width = m_Columns; var tempTexture = new Texture2D(width, height, TextureFormat.RGB24, false); var converter = new OneHotToTextureUtil(height, width); var bytesOut = new List(); // Encode the cell types and special types as separate batches of PNGs // This is potentially wasteful, e.g. if there are 4 cell types and 1 special type, we could // fit in in 2 images, but we'll use 3 here (2 PNGs for the 4 cell type channels, and 1 for // the special types). Note that we have to also implement the sparse channel mapping. // Optimize this it later. var numCellImages = (m_NumCellTypes + 2) / 3; for (var i = 0; i < numCellImages; i++) { converter.EncodeToTexture(m_Board.GetCellType, tempTexture, 3 * i); bytesOut.AddRange(tempTexture.EncodeToPNG()); } var numSpecialImages = (SpecialTypeSize + 2) / 3; for (var i = 0; i < numSpecialImages; i++) { converter.EncodeToTexture(m_Board.GetSpecialType, tempTexture, 3 * i); bytesOut.AddRange(tempTexture.EncodeToPNG()); } DestroyTexture(tempTexture); return bytesOut.ToArray(); } /// public void Update() { } /// public void Reset() { } /// public SensorCompressionType GetCompressionType() { return m_ObservationType == Match3ObservationType.CompressedVisual ? SensorCompressionType.PNG : SensorCompressionType.None; } /// public string GetName() { return m_Name; } /// public int[] GetCompressedChannelMapping() { return m_SparseChannelMapping; } /// public BuiltInSensorType GetBuiltInSensorType() { return BuiltInSensorType.Match3Sensor; } static void DestroyTexture(Texture2D texture) { if (Application.isEditor) { // Edit Mode tests complain if we use Destroy() Object.DestroyImmediate(texture); } else { Object.Destroy(texture); } } } /// /// Utility class for converting a 2D array of ints representing a one-hot encoding into /// a texture, suitable for conversion to PNGs for observations. /// Works by encoding 3 values at a time as pixels in the texture, thus it should be /// called (maxValue + 2) / 3 times, increasing the channelOffset by 3 each time. /// internal class OneHotToTextureUtil { Color[] m_Colors; int m_Height; int m_Width; private static Color[] s_OneHotColors = { Color.red, Color.green, Color.blue }; public delegate int GridValueProvider(int x, int y); public OneHotToTextureUtil(int height, int width) { m_Colors = new Color[height * width]; m_Height = height; m_Width = width; } public void EncodeToTexture(GridValueProvider gridValueProvider, Texture2D texture, int channelOffset) { var i = 0; // There's an implicit flip converting to PNG from texture, so make sure we // counteract that when forming the texture by iterating through h in reverse. for (var h = m_Height - 1; h >= 0; h--) { for (var w = 0; w < m_Width; w++) { int oneHotValue = gridValueProvider(h, w); if (oneHotValue < channelOffset || oneHotValue >= channelOffset + 3) { m_Colors[i++] = Color.black; } else { m_Colors[i++] = s_OneHotColors[oneHotValue - channelOffset]; } } } texture.SetPixels(m_Colors); } } }