# # Unity ML-Agents Toolkit
# ## ML-Agents Learning (POCA)
# Contains an implementation of MA-POCA.

from collections import defaultdict
from typing import cast, Dict

import numpy as np

from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod
from mlagents_envs.logging_util import get_logger
from mlagents_envs.base_env import BehaviorSpec
from mlagents.trainers.buffer import BufferKey, RewardSignalUtil
from mlagents.trainers.trainer.rl_trainer import RLTrainer
from mlagents.trainers.policy import Policy
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.poca.optimizer_torch import TorchPOCAOptimizer
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
from mlagents.trainers.settings import TrainerSettings, POCASettings

logger = get_logger(__name__)


class POCATrainer(RLTrainer):
    """The POCATrainer is an implementation of the MA-POCA algorithm."""

    def __init__(
        self,
        behavior_name: str,
        reward_buff_cap: int,
        trainer_settings: TrainerSettings,
        training: bool,
        load: bool,
        seed: int,
        artifact_path: str,
    ):
        """
        Responsible for collecting experiences and training POCA model.
        :param behavior_name: The name of the behavior associated with trainer config
        :param reward_buff_cap: Max reward history to track in the reward buffer
        :param trainer_settings: The parameters for the trainer.
        :param training: Whether the trainer is set for training.
        :param load: Whether the model should be loaded.
        :param seed: The seed the model will be initialized with
        :param artifact_path: The directory within which to store artifacts from this trainer.
        """
        super().__init__(
            behavior_name,
            trainer_settings,
            training,
            load,
            artifact_path,
            reward_buff_cap,
        )
        self.hyperparameters: POCASettings = cast(
            POCASettings, self.trainer_settings.hyperparameters
        )
        self.seed = seed
        self.policy: TorchPolicy = None  # type: ignore
        self.collected_group_rewards: Dict[str, int] = defaultdict(lambda: 0)

    def _process_trajectory(self, trajectory: Trajectory) -> None:
        """
        Takes a trajectory and processes it, putting it into the update buffer.
        Processing involves calculating value and advantage targets for model updating step.
        :param trajectory: The Trajectory tuple containing the steps to be processed.
        """
        super()._process_trajectory(trajectory)
        agent_id = trajectory.agent_id  # All the agents should have the same ID

        agent_buffer_trajectory = trajectory.to_agentbuffer()
        # Update the normalization
        if self.is_training:
            self.policy.update_normalization(agent_buffer_trajectory)

        # Get all value estimates
        (
            value_estimates,
            baseline_estimates,
            value_next,
            value_memories,
            baseline_memories,
        ) = self.optimizer.get_trajectory_and_baseline_value_estimates(
            agent_buffer_trajectory,
            trajectory.next_obs,
            trajectory.next_group_obs,
            trajectory.all_group_dones_reached
            and trajectory.done_reached
            and not trajectory.interrupted,
        )

        if value_memories is not None and baseline_memories is not None:
            agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories)
            agent_buffer_trajectory[BufferKey.BASELINE_MEMORY].set(baseline_memories)

        for name, v in value_estimates.items():
            agent_buffer_trajectory[RewardSignalUtil.value_estimates_key(name)].extend(
                v
            )
            agent_buffer_trajectory[
                RewardSignalUtil.baseline_estimates_key(name)
            ].extend(baseline_estimates[name])
            self._stats_reporter.add_stat(
                f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Baseline Estimate",
                np.mean(baseline_estimates[name]),
            )
            self._stats_reporter.add_stat(
                f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value Estimate",
                np.mean(value_estimates[name]),
            )

        self.collected_rewards["environment"][agent_id] += np.sum(
            agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS]
        )
        self.collected_group_rewards[agent_id] += np.sum(
            agent_buffer_trajectory[BufferKey.GROUP_REWARD]
        )
        for name, reward_signal in self.optimizer.reward_signals.items():
            evaluate_result = (
                reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength
            )
            agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].extend(
                evaluate_result
            )
            # Report the reward signals
            self.collected_rewards[name][agent_id] += np.sum(evaluate_result)

        # Compute lambda returns and advantage
        tmp_advantages = []
        for name in self.optimizer.reward_signals:

            local_rewards = np.array(
                agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].get_batch(),
                dtype=np.float32,
            )

            baseline_estimate = agent_buffer_trajectory[
                RewardSignalUtil.baseline_estimates_key(name)
            ].get_batch()
            v_estimates = agent_buffer_trajectory[
                RewardSignalUtil.value_estimates_key(name)
            ].get_batch()

            lambd_returns = lambda_return(
                r=local_rewards,
                value_estimates=v_estimates,
                gamma=self.optimizer.reward_signals[name].gamma,
                lambd=self.hyperparameters.lambd,
                value_next=value_next[name],
            )

            local_advantage = np.array(lambd_returns) - np.array(baseline_estimate)

            agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set(
                lambd_returns
            )
            agent_buffer_trajectory[RewardSignalUtil.advantage_key(name)].set(
                local_advantage
            )
            tmp_advantages.append(local_advantage)

        # Get global advantages
        global_advantages = list(
            np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0)
        )
        agent_buffer_trajectory[BufferKey.ADVANTAGES].set(global_advantages)

        self._append_to_update_buffer(agent_buffer_trajectory)

        # If this was a terminal trajectory, append stats and reset reward collection
        if trajectory.done_reached:
            self._update_end_episode_stats(agent_id, self.optimizer)
            # Remove dead agents from group reward recording
            if not trajectory.all_group_dones_reached:
                self.collected_group_rewards.pop(agent_id)

        # If the whole team is done, average the remaining group rewards.
        if trajectory.all_group_dones_reached and trajectory.done_reached:
            self.stats_reporter.add_stat(
                "Environment/Group Cumulative Reward",
                self.collected_group_rewards.get(agent_id, 0),
                aggregation=StatsAggregationMethod.HISTOGRAM,
            )
            self.collected_group_rewards.pop(agent_id)

    def _is_ready_update(self):
        """
        Returns whether or not the trainer has enough elements to run update model
        :return: A boolean corresponding to whether or not update_model() can be run
        """
        size_of_buffer = self.update_buffer.num_experiences
        return size_of_buffer > self.hyperparameters.buffer_size

    def _update_policy(self):
        """
        Uses demonstration_buffer to update the policy.
        The reward signal generators must be updated in this method at their own pace.
        """
        buffer_length = self.update_buffer.num_experiences
        self.cumulative_returns_since_policy_update.clear()

        # Make sure batch_size is a multiple of sequence length. During training, we
        # will need to reshape the data into a batch_size x sequence_length tensor.
        batch_size = (
            self.hyperparameters.batch_size
            - self.hyperparameters.batch_size % self.policy.sequence_length
        )
        # Make sure there is at least one sequence
        batch_size = max(batch_size, self.policy.sequence_length)

        n_sequences = max(
            int(self.hyperparameters.batch_size / self.policy.sequence_length), 1
        )

        advantages = np.array(
            self.update_buffer[BufferKey.ADVANTAGES].get_batch(), dtype=np.float32
        )
        self.update_buffer[BufferKey.ADVANTAGES].set(
            (advantages - advantages.mean()) / (advantages.std() + 1e-10)
        )
        num_epoch = self.hyperparameters.num_epoch
        batch_update_stats = defaultdict(list)
        for _ in range(num_epoch):
            self.update_buffer.shuffle(sequence_length=self.policy.sequence_length)
            buffer = self.update_buffer
            max_num_batch = buffer_length // batch_size
            for i in range(0, max_num_batch * batch_size, batch_size):
                update_stats = self.optimizer.update(
                    buffer.make_mini_batch(i, i + batch_size), n_sequences
                )
                for stat_name, value in update_stats.items():
                    batch_update_stats[stat_name].append(value)

        for stat, stat_list in batch_update_stats.items():
            self._stats_reporter.add_stat(stat, np.mean(stat_list))

        if self.optimizer.bc_module:
            update_stats = self.optimizer.bc_module.update()
            for stat, val in update_stats.items():
                self._stats_reporter.add_stat(stat, val)
        self._clear_update_buffer()
        return True

    def end_episode(self) -> None:
        """
        A signal that the Episode has ended. The buffer must be reset.
        Get only called when the academy resets. For POCA, we should
        also zero out the group rewards.
        """
        super().end_episode()
        self.collected_group_rewards.clear()

    def create_torch_policy(
        self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec
    ) -> TorchPolicy:
        """
        Creates a policy with a PyTorch backend and POCA hyperparameters
        :param parsed_behavior_id:
        :param behavior_spec: specifications for policy construction
        :return policy
        """
        policy = TorchPolicy(
            self.seed,
            behavior_spec,
            self.trainer_settings,
            condition_sigma_on_obs=False,  # Faster training for POCA
            separate_critic=True,  # Match network architecture with TF
        )
        return policy

    def create_poca_optimizer(self) -> TorchPOCAOptimizer:
        return TorchPOCAOptimizer(self.policy, self.trainer_settings)

    def add_policy(
        self, parsed_behavior_id: BehaviorIdentifiers, policy: Policy
    ) -> None:
        """
        Adds policy to trainer.
        :param parsed_behavior_id: Behavior identifiers that the policy should belong to.
        :param policy: Policy to associate with name_behavior_id.
        """
        if not isinstance(policy, TorchPolicy):
            raise RuntimeError(f"policy {policy} must be an instance of TorchPolicy.")
        self.policy = policy
        self.policies[parsed_behavior_id.behavior_id] = policy
        self.optimizer = self.create_poca_optimizer()
        for _reward_signal in self.optimizer.reward_signals.keys():
            self.collected_rewards[_reward_signal] = defaultdict(lambda: 0)

        self.model_saver.register(self.policy)
        self.model_saver.register(self.optimizer)
        self.model_saver.initialize_or_load()

        # Needed to resume loads properly
        self._step = policy.get_current_step()

    def get_policy(self, name_behavior_id: str) -> Policy:
        """
        Gets policy from trainer associated with name_behavior_id
        :param name_behavior_id: full identifier of policy
        """

        return self.policy


def lambda_return(r, value_estimates, gamma=0.99, lambd=0.8, value_next=0.0):
    returns = np.zeros_like(r)
    returns[-1] = r[-1] + gamma * value_next
    for t in reversed(range(0, r.size - 1)):
        returns[t] = (
            gamma * lambd * returns[t + 1]
            + r[t]
            + (1 - lambd) * gamma * value_estimates[t + 1]
        )
    return returns