import unittest.mock as mock import pytest import numpy as np import tensorflow as tf from unitytrainers.bc.models import BehavioralCloningModel from unityagents import UnityEnvironment from .mock_communicator import MockCommunicator @mock.patch('unityagents.UnityEnvironment.executable_launcher') @mock.patch('unityagents.UnityEnvironment.get_communicator') def test_cc_bc_model(mock_communicator, mock_launcher): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): mock_communicator.return_value = MockCommunicator( discrete_action=False, visual_inputs=0) env = UnityEnvironment(' ') model = BehavioralCloningModel(env.brains["RealFakeBrain"]) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.policy] feed_dict = {model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]])} sess.run(run_list, feed_dict=feed_dict) env.close() @mock.patch('unityagents.UnityEnvironment.executable_launcher') @mock.patch('unityagents.UnityEnvironment.get_communicator') def test_dc_bc_model(mock_communicator, mock_launcher): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): mock_communicator.return_value = MockCommunicator( discrete_action=True, visual_inputs=0) env = UnityEnvironment(' ') model = BehavioralCloningModel(env.brains["RealFakeBrain"]) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.policy] feed_dict = {model.batch_size: 2, model.dropout_rate: 1.0, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]])} sess.run(run_list, feed_dict=feed_dict) env.close() @mock.patch('unityagents.UnityEnvironment.executable_launcher') @mock.patch('unityagents.UnityEnvironment.get_communicator') def test_visual_dc_bc_model(mock_communicator, mock_launcher): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): mock_communicator.return_value = MockCommunicator( discrete_action=True, visual_inputs=2) env = UnityEnvironment(' ') model = BehavioralCloningModel(env.brains["RealFakeBrain"]) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.policy] feed_dict = {model.batch_size: 2, model.dropout_rate: 1.0, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.visual_in[0]: np.ones([2, 40, 30, 3]), model.visual_in[1]: np.ones([2, 40, 30, 3])} sess.run(run_list, feed_dict=feed_dict) env.close() @mock.patch('unityagents.UnityEnvironment.executable_launcher') @mock.patch('unityagents.UnityEnvironment.get_communicator') def test_visual_cc_bc_model(mock_communicator, mock_launcher): tf.reset_default_graph() with tf.Session() as sess: with tf.variable_scope("FakeGraphScope"): mock_communicator.return_value = MockCommunicator( discrete_action=False, visual_inputs=2) env = UnityEnvironment(' ') model = BehavioralCloningModel(env.brains["RealFakeBrain"]) init = tf.global_variables_initializer() sess.run(init) run_list = [model.sample_action, model.policy] feed_dict = {model.batch_size: 2, model.sequence_length: 1, model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]), model.visual_in[0]: np.ones([2, 40, 30, 3]), model.visual_in[1]: np.ones([2, 40, 30, 3])} sess.run(run_list, feed_dict=feed_dict) env.close() if __name__ == '__main__': pytest.main()