using System;
using System.Collections.Generic;
using Unity.Barracuda;
using Unity.MLAgents.Inference;
using UnityEngine;
namespace Unity.MLAgents.Sensors
{
///
/// Allows sensors to write to both TensorProxy and float arrays/lists.
///
public class ObservationWriter
{
IList m_Data;
int m_Offset;
TensorProxy m_Proxy;
int m_Batch;
TensorShape m_TensorShape;
internal ObservationWriter() { }
///
/// Set the writer to write to an IList at the given channelOffset.
///
/// Float array or list that will be written to.
/// Shape of the observations to be written.
/// Offset from the start of the float data to write to.
internal void SetTarget(IList data, int[] shape, int offset)
{
m_Data = data;
m_Offset = offset;
m_Proxy = null;
m_Batch = 0;
if (shape.Length == 1)
{
m_TensorShape = new TensorShape(m_Batch, shape[0]);
}
else
{
m_TensorShape = new TensorShape(m_Batch, shape[0], shape[1], shape[2]);
}
}
///
/// Set the writer to write to a TensorProxy at the given batch and channel offset.
///
/// Tensor proxy that will be written to.
/// Batch index in the tensor proxy (i.e. the index of the Agent).
/// Offset from the start of the channel to write to.
internal void SetTarget(TensorProxy tensorProxy, int batchIndex, int channelOffset)
{
m_Proxy = tensorProxy;
m_Batch = batchIndex;
m_Offset = channelOffset;
m_Data = null;
m_TensorShape = m_Proxy.data.shape;
}
///
/// 1D write access at a specified index. Use AddRange if possible instead.
///
/// Index to write to.
public float this[int index]
{
set
{
if (m_Data != null)
{
m_Data[index + m_Offset] = value;
}
else
{
m_Proxy.data[m_Batch, index + m_Offset] = value;
}
}
}
///
/// 3D write access at the specified height, width, and channel.
///
///
///
///
public float this[int h, int w, int ch]
{
set
{
if (m_Data != null)
{
if (h < 0 || h >= m_TensorShape.height)
{
throw new IndexOutOfRangeException($"height value {h} must be in range [0, {m_TensorShape.height - 1}]");
}
if (w < 0 || w >= m_TensorShape.width)
{
throw new IndexOutOfRangeException($"width value {w} must be in range [0, {m_TensorShape.width - 1}]");
}
if (ch < 0 || ch >= m_TensorShape.channels)
{
throw new IndexOutOfRangeException($"channel value {ch} must be in range [0, {m_TensorShape.channels - 1}]");
}
var index = m_TensorShape.Index(m_Batch, h, w, ch + m_Offset);
m_Data[index] = value;
}
else
{
m_Proxy.data[m_Batch, h, w, ch + m_Offset] = value;
}
}
}
///
/// Write the range of floats
///
///
/// Optional write offset.
public void AddRange(IEnumerable data, int writeOffset = 0)
{
if (m_Data != null)
{
int index = 0;
foreach (var val in data)
{
m_Data[index + m_Offset + writeOffset] = val;
index++;
}
}
else
{
int index = 0;
foreach (var val in data)
{
m_Proxy.data[m_Batch, index + m_Offset + writeOffset] = val;
index++;
}
}
}
///
/// Write the Vector3 components.
///
/// The Vector3 to be written.
/// Optional write offset.
public void Add(Vector3 vec, int writeOffset = 0)
{
if (m_Data != null)
{
m_Data[m_Offset + writeOffset + 0] = vec.x;
m_Data[m_Offset + writeOffset + 1] = vec.y;
m_Data[m_Offset + writeOffset + 2] = vec.z;
}
else
{
m_Proxy.data[m_Batch, m_Offset + writeOffset + 0] = vec.x;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 1] = vec.y;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 2] = vec.z;
}
}
///
/// Write the Vector4 components.
///
/// The Vector4 to be written.
/// Optional write offset.
public void Add(Vector4 vec, int writeOffset = 0)
{
if (m_Data != null)
{
m_Data[m_Offset + writeOffset + 0] = vec.x;
m_Data[m_Offset + writeOffset + 1] = vec.y;
m_Data[m_Offset + writeOffset + 2] = vec.z;
m_Data[m_Offset + writeOffset + 3] = vec.w;
}
else
{
m_Proxy.data[m_Batch, m_Offset + writeOffset + 0] = vec.x;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 1] = vec.y;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 2] = vec.z;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 3] = vec.w;
}
}
///
/// Write the Quaternion components.
///
/// The Quaternion to be written.
/// Optional write offset.
public void Add(Quaternion quat, int writeOffset = 0)
{
if (m_Data != null)
{
m_Data[m_Offset + writeOffset + 0] = quat.x;
m_Data[m_Offset + writeOffset + 1] = quat.y;
m_Data[m_Offset + writeOffset + 2] = quat.z;
m_Data[m_Offset + writeOffset + 3] = quat.w;
}
else
{
m_Proxy.data[m_Batch, m_Offset + writeOffset + 0] = quat.x;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 1] = quat.y;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 2] = quat.z;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 3] = quat.w;
}
}
}
///
/// Provides extension methods for the ObservationWriter.
///
public static class ObservationWriterExtension
{
///
/// Writes a Texture2D into a ObservationWriter.
///
///
/// Writer to fill with Texture data.
///
///
/// The texture to be put into the tensor.
///
///
/// If set to true the textures will be converted to grayscale before
/// being stored in the tensor.
///
/// The number of floats written
public static int WriteTexture(
this ObservationWriter obsWriter,
Texture2D texture,
bool grayScale)
{
var width = texture.width;
var height = texture.height;
var texturePixels = texture.GetPixels32();
// During training, we convert from Texture to PNG before sending to the trainer, which has the
// effect of flipping the image. We need another flip here at inference time to match this.
for (var h = height - 1; h >= 0; h--)
{
for (var w = 0; w < width; w++)
{
var currentPixel = texturePixels[(height - h - 1) * width + w];
if (grayScale)
{
obsWriter[h, w, 0] =
(currentPixel.r + currentPixel.g + currentPixel.b) / 3f / 255.0f;
}
else
{
// For Color32, the r, g and b values are between 0 and 255.
obsWriter[h, w, 0] = currentPixel.r / 255.0f;
obsWriter[h, w, 1] = currentPixel.g / 255.0f;
obsWriter[h, w, 2] = currentPixel.b / 255.0f;
}
}
}
return height * width * (grayScale ? 1 : 3);
}
}
}