using System.Collections.Generic; using NUnit.Framework; using Unity.MLAgents.Inference; using Unity.MLAgents.Policies; using Unity.Barracuda; namespace Unity.MLAgents.Tests { public class EditModeTestInternalBrainTensorApplier { class TestAgent : Agent { } [Test] public void Construction() { var bp = new BrainParameters(); var alloc = new TensorCachingAllocator(); var mem = new Dictionary>(); var tensorGenerator = new TensorApplier(bp, 0, alloc, mem); Assert.IsNotNull(tensorGenerator); alloc.Dispose(); } [Test] public void ApplyContinuousActionOutput() { var inputTensor = new TensorProxy() { shape = new long[] { 2, 3 }, data = new Tensor(2, 3, new float[] { 1, 2, 3, 4, 5, 6 }) }; var applier = new ContinuousActionOutputApplier(); var agentIds = new List() { 0, 1 }; // Dictionary from AgentId to Action var actionDict = new Dictionary() { { 0, null }, { 1, null } }; applier.Apply(inputTensor, agentIds, actionDict); Assert.AreEqual(actionDict[0][0], 1); Assert.AreEqual(actionDict[0][1], 2); Assert.AreEqual(actionDict[0][2], 3); Assert.AreEqual(actionDict[1][0], 4); Assert.AreEqual(actionDict[1][1], 5); Assert.AreEqual(actionDict[1][2], 6); } [Test] public void ApplyDiscreteActionOutput() { var inputTensor = new TensorProxy() { shape = new long[] { 2, 5 }, data = new Tensor( 2, 5, new[] { 0.5f, 22.5f, 0.1f, 5f, 1f, 4f, 5f, 6f, 7f, 8f }) }; var alloc = new TensorCachingAllocator(); var applier = new DiscreteActionOutputApplier(new[] { 2, 3 }, 0, alloc); var agentIds = new List() { 0, 1 }; // Dictionary from AgentId to Action var actionDict = new Dictionary() { { 0, null }, { 1, null } }; applier.Apply(inputTensor, agentIds, actionDict); Assert.AreEqual(actionDict[0][0], 1); Assert.AreEqual(actionDict[0][1], 1); Assert.AreEqual(actionDict[1][0], 1); Assert.AreEqual(actionDict[1][1], 2); alloc.Dispose(); } } }