import unittest.mock as mock import pytest import numpy as np from mlagents.trainers.buffer import Buffer def create_mock_brainparams( number_visual_observations=0, num_stacked_vector_observations=1, vector_action_space_type="continuous", vector_observation_space_size=3, vector_action_space_size=None, ): """ Creates a mock BrainParameters object with parameters. """ # Avoid using mutable object as default param if vector_action_space_size is None: vector_action_space_size = [2] mock_brain = mock.Mock() mock_brain.return_value.number_visual_observations = number_visual_observations mock_brain.return_value.num_stacked_vector_observations = ( num_stacked_vector_observations ) mock_brain.return_value.vector_action_space_type = vector_action_space_type mock_brain.return_value.vector_observation_space_size = ( vector_observation_space_size ) camrez = {"blackAndWhite": False, "height": 84, "width": 84} mock_brain.return_value.camera_resolutions = [camrez] * number_visual_observations mock_brain.return_value.vector_action_space_size = vector_action_space_size mock_brain.return_value.brain_name = "MockBrain" return mock_brain() def create_mock_braininfo( num_agents=1, num_vector_observations=0, num_vis_observations=0, num_vector_acts=2, discrete=False, num_discrete_branches=1, ): """ Creates a mock BrainInfo with observations. Imitates constant vector/visual observations, rewards, dones, and agents. :int num_agents: Number of "agents" to imitate in your BrainInfo values. :int num_vector_observations: Number of "observations" in your observation space :int num_vis_observations: Number of "observations" in your observation space :int num_vector_acts: Number of actions in your action space :bool discrete: Whether or not action space is discrete """ mock_braininfo = mock.Mock() mock_braininfo.return_value.visual_observations = num_vis_observations * [ np.ones((num_agents, 84, 84, 3)) ] mock_braininfo.return_value.vector_observations = np.array( num_agents * [num_vector_observations * [1]] ) if discrete: mock_braininfo.return_value.previous_vector_actions = np.array( num_agents * [num_discrete_branches * [0.5]] ) mock_braininfo.return_value.action_masks = np.array( num_agents * [num_vector_acts * [1.0]] ) else: mock_braininfo.return_value.previous_vector_actions = np.array( num_agents * [num_vector_acts * [0.5]] ) mock_braininfo.return_value.memories = np.ones((num_agents, 8)) mock_braininfo.return_value.rewards = num_agents * [1.0] mock_braininfo.return_value.local_done = num_agents * [False] mock_braininfo.return_value.text_observations = num_agents * [""] mock_braininfo.return_value.previous_text_actions = num_agents * [""] mock_braininfo.return_value.max_reached = num_agents * [100] mock_braininfo.return_value.action_masks = num_agents * [num_vector_acts * [1.0]] mock_braininfo.return_value.agents = range(0, num_agents) return mock_braininfo() def setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo): """ Takes a mock UnityEnvironment and adds the appropriate properties, defined by the mock BrainParameters and BrainInfo. :Mock mock_env: A mock UnityEnvironment, usually empty. :Mock mock_brain: A mock Brain object that specifies the params of this environment. :Mock mock_braininfo: A mock BrainInfo object that will be returned at each step and reset. """ mock_env.return_value.academy_name = "MockAcademy" mock_env.return_value.brains = {"MockBrain": mock_brain} mock_env.return_value.external_brain_names = ["MockBrain"] mock_env.return_value.brain_names = ["MockBrain"] mock_env.return_value.reset.return_value = {"MockBrain": mock_braininfo} mock_env.return_value.step.return_value = {"MockBrain": mock_braininfo} def simulate_rollout(env, policy, buffer_init_samples): brain_info_list = [] for i in range(buffer_init_samples): brain_info_list.append(env.step()[env.brain_names[0]]) buffer = create_buffer(brain_info_list, policy.brain, policy.sequence_length) return buffer def create_buffer(brain_infos, brain_params, sequence_length): buffer = Buffer() # Make a buffer for idx, experience in enumerate(brain_infos): if idx > len(brain_infos) - 2: break current_brain_info = brain_infos[idx] next_brain_info = brain_infos[idx + 1] buffer[0].last_brain_info = current_brain_info buffer[0]["done"].append(next_brain_info.local_done[0]) buffer[0]["rewards"].append(next_brain_info.rewards[0]) for i in range(brain_params.number_visual_observations): buffer[0]["visual_obs%d" % i].append( current_brain_info.visual_observations[i][0] ) buffer[0]["next_visual_obs%d" % i].append( current_brain_info.visual_observations[i][0] ) if brain_params.vector_observation_space_size > 0: buffer[0]["vector_obs"].append(current_brain_info.vector_observations[0]) buffer[0]["next_vector_in"].append( current_brain_info.vector_observations[0] ) buffer[0]["actions"].append(next_brain_info.previous_vector_actions[0]) buffer[0]["prev_action"].append(current_brain_info.previous_vector_actions[0]) buffer[0]["masks"].append(1.0) buffer[0]["advantages"].append(1.0) if brain_params.vector_action_space_type == "discrete": buffer[0]["action_probs"].append( np.ones(sum(brain_params.vector_action_space_size)) ) else: buffer[0]["action_probs"].append(np.ones(buffer[0]["actions"][0].shape)) buffer[0]["actions_pre"].append(np.ones(buffer[0]["actions"][0].shape)) buffer[0]["random_normal_epsilon"].append( np.ones(buffer[0]["actions"][0].shape) ) buffer[0]["action_mask"].append(np.ones(buffer[0]["actions"][0].shape)) buffer[0]["memory"].append(np.ones(8)) buffer.append_update_buffer(0, batch_size=None, training_length=sequence_length) return buffer