from typing import Any, Dict, List, Tuple, Optional import numpy as np from mlagents.torch_utils import torch, default_device import copy from mlagents.trainers.action_info import ActionInfo from mlagents.trainers.behavior_id_utils import get_global_agent_id from mlagents.trainers.policy import Policy from mlagents_envs.base_env import DecisionSteps, BehaviorSpec from mlagents_envs.timers import timed from mlagents.trainers.settings import TrainerSettings from mlagents.trainers.torch.networks import ( SharedActorCritic, SeparateActorCritic, GlobalSteps, ) from mlagents.trainers.torch.utils import ModelUtils from mlagents.trainers.buffer import AgentBuffer from mlagents.trainers.torch.agent_action import AgentAction from mlagents.trainers.torch.action_log_probs import ActionLogProbs EPSILON = 1e-7 # Small value to avoid divide by zero class TorchPolicy(Policy): def __init__( self, seed: int, behavior_spec: BehaviorSpec, trainer_settings: TrainerSettings, tanh_squash: bool = False, reparameterize: bool = False, separate_critic: bool = True, condition_sigma_on_obs: bool = True, ): """ Policy that uses a multilayer perceptron to map the observations to actions. Could also use a CNN to encode visual input prior to the MLP. Supports discrete and continuous actions, as well as recurrent networks. :param seed: Random seed. :param behavior_spec: Assigned BehaviorSpec object. :param trainer_settings: Defined training parameters. :param load: Whether a pre-trained model will be loaded or a new one created. :param tanh_squash: Whether to use a tanh function on the continuous output, or a clipped output. :param reparameterize: Whether we are using the resampling trick to update the policy in continuous output. """ super().__init__( seed, behavior_spec, trainer_settings, tanh_squash, reparameterize, condition_sigma_on_obs, ) self.global_step = ( GlobalSteps() ) # could be much simpler if TorchPolicy is nn.Module self.grads = None reward_signal_configs = trainer_settings.reward_signals reward_signal_names = [key.value for key, _ in reward_signal_configs.items()] self.stats_name_to_update_name = { "Losses/Value Loss": "value_loss", "Losses/Policy Loss": "policy_loss", } if separate_critic: ac_class = SeparateActorCritic else: ac_class = SharedActorCritic self.actor_critic = ac_class( sensor_specs=self.behavior_spec.sensor_specs, network_settings=trainer_settings.network_settings, action_spec=behavior_spec.action_spec, stream_names=reward_signal_names, conditional_sigma=self.condition_sigma_on_obs, tanh_squash=tanh_squash, ) # Save the m_size needed for export self._export_m_size = self.m_size # m_size needed for training is determined by network, not trainer settings self.m_size = self.actor_critic.memory_size self.actor_critic.to(default_device()) self._clip_action = not tanh_squash @property def export_memory_size(self) -> int: """ Returns the memory size of the exported ONNX policy. This only includes the memory of the Actor and not any auxillary networks. """ return self._export_m_size def _extract_masks(self, decision_requests: DecisionSteps) -> np.ndarray: mask = None if self.behavior_spec.action_spec.discrete_size > 0: num_discrete_flat = np.sum(self.behavior_spec.action_spec.discrete_branches) mask = torch.ones([len(decision_requests), num_discrete_flat]) if decision_requests.action_mask is not None: mask = torch.as_tensor( 1 - np.concatenate(decision_requests.action_mask, axis=1) ) return mask def update_normalization(self, buffer: AgentBuffer) -> None: """ If this policy normalizes vector observations, this will update the norm values in the graph. :param buffer: The buffer with the observations to add to the running estimate of the distribution. """ if self.normalize: self.actor_critic.update_normalization(buffer) @timed def sample_actions( self, obs: List[torch.Tensor], masks: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, seq_len: int = 1, critic_obs: Optional[List[List[torch.Tensor]]] = None, ) -> Tuple[AgentAction, ActionLogProbs, torch.Tensor, torch.Tensor]: """ :param obs: List of observations. :param masks: Loss masks for RNN, else None. :param memories: Input memories when using RNN, else None. :param seq_len: Sequence length when using RNN. :return: Tuple of AgentAction, ActionLogProbs, entropies, and output memories. """ actions, log_probs, entropies, memories = self.actor_critic.get_action_stats( obs, masks, memories, seq_len ) return (actions, log_probs, entropies, memories) def evaluate_actions( self, obs: List[torch.Tensor], actions: AgentAction, masks: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, seq_len: int = 1, team_obs: Optional[List[List[torch.Tensor]]] = None, team_act: Optional[List[AgentAction]] = None, ) -> Tuple[ActionLogProbs, torch.Tensor, Dict[str, torch.Tensor]]: log_probs, entropies, value_heads, marg_vals = self.actor_critic.get_stats_and_value( obs, actions, masks, memories, seq_len, team_obs, team_act ) return log_probs, entropies, value_heads, marg_vals @timed def evaluate( self, decision_requests: DecisionSteps, global_agent_ids: List[str] ) -> Dict[str, Any]: """ Evaluates policy for the agent experiences provided. :param global_agent_ids: :param decision_requests: DecisionStep object containing inputs. :return: Outputs from network as defined by self.inference_dict. """ obs = decision_requests.obs masks = self._extract_masks(decision_requests) tensor_obs = [torch.as_tensor(np_ob) for np_ob in obs] memories = torch.as_tensor(self.retrieve_memories(global_agent_ids)).unsqueeze( 0 ) run_out = {} with torch.no_grad(): action, log_probs, entropy, memories = self.sample_actions( tensor_obs, masks=masks, memories=memories ) action_tuple = action.to_action_tuple() run_out["action"] = action_tuple # This is the clipped action which is not saved to the buffer # but is exclusively sent to the environment. env_action_tuple = action.to_action_tuple(clip=self._clip_action) run_out["env_action"] = env_action_tuple run_out["log_probs"] = log_probs.to_log_probs_tuple() run_out["entropy"] = ModelUtils.to_numpy(entropy) run_out["learning_rate"] = 0.0 if self.use_recurrent: run_out["memory_out"] = ModelUtils.to_numpy(memories).squeeze(0) return run_out def get_action( self, decision_requests: DecisionSteps, worker_id: int = 0 ) -> ActionInfo: """ Decides actions given observations information, and takes them in environment. :param worker_id: :param decision_requests: A dictionary of behavior names and DecisionSteps from environment. :return: an ActionInfo containing action, memories, values and an object to be passed to add experiences """ if len(decision_requests) == 0: return ActionInfo.empty() global_agent_ids = [ get_global_agent_id(worker_id, int(agent_id)) for agent_id in decision_requests.agent_id ] # For 1-D array, the iterator order is correct. run_out = self.evaluate(decision_requests, global_agent_ids) self.save_memories(global_agent_ids, run_out.get("memory_out")) self.check_nan_action(run_out.get("action")) return ActionInfo( action=run_out.get("action"), env_action=run_out.get("env_action"), value=run_out.get("value"), outputs=run_out, agent_ids=list(decision_requests.agent_id), ) def get_current_step(self): """ Gets current model step. :return: current model step. """ return self.global_step.current_step def set_step(self, step: int) -> int: """ Sets current model step to step without creating additional ops. :param step: Step to set the current model step to. :return: The step the model was set to. """ self.global_step.current_step = step return step def increment_step(self, n_steps): """ Increments model step. """ self.global_step.increment(n_steps) return self.get_current_step() def load_weights(self, values: List[np.ndarray]) -> None: self.actor_critic.load_state_dict(values) def init_load_weights(self) -> None: pass def get_weights(self) -> List[np.ndarray]: return copy.deepcopy(self.actor_critic.state_dict()) def get_modules(self): return {"Policy": self.actor_critic, "global_step": self.global_step}