using System.Collections.Generic;
using System;
using System.Linq;
using Barracuda;
using MLAgents.InferenceBrain.Utils;
namespace MLAgents.InferenceBrain
{
///
/// Reshapes a Tensor so that its first dimension becomes equal to the current batch size
/// and initializes its content to be zeros. Will only work on 2-dimensional tensors.
/// The second dimension of the Tensor will not be modified.
///
public class BiDimensionalOutputGenerator : TensorGenerator.Generator
{
private ITensorAllocator _allocator;
public BiDimensionalOutputGenerator(ITensorAllocator allocator)
{
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
}
}
///
/// Generates the Tensor corresponding to the BatchSize input : Will be a one dimensional
/// integer array of size 1 containing the batch size.
///
public class BatchSizeGenerator : TensorGenerator.Generator
{
private ITensorAllocator _allocator;
public BatchSizeGenerator(ITensorAllocator allocator)
{
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
tensorProxy.Data = _allocator.Alloc(new TensorShape(1,1));
tensorProxy.Data[0] = batchSize;
}
}
///
/// Generates the Tensor corresponding to the SequenceLength input : Will be a one
/// dimensional integer array of size 1 containing 1.
/// Note : the sequence length is always one since recurrent networks only predict for
/// one step at the time.
///
public class SequenceLengthGenerator : TensorGenerator.Generator
{
private ITensorAllocator _allocator;
public SequenceLengthGenerator(ITensorAllocator allocator)
{
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
tensorProxy.Shape = new long[0];
tensorProxy.Data = _allocator.Alloc(new TensorShape(1,1));
tensorProxy.Data[0] = 1;
}
}
///
/// Generates the Tensor corresponding to the VectorObservation input : Will be a two
/// dimensional float array of dimension [batchSize x vectorObservationSize].
/// It will use the Vector Observation data contained in the agentInfo to fill the data
/// of the tensor.
///
public class VectorObservationGenerator : TensorGenerator.Generator
{
private ITensorAllocator _allocator;
public VectorObservationGenerator(ITensorAllocator allocator)
{
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
var vecObsSizeT = tensorProxy.Shape[tensorProxy.Shape.Length - 1];
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
var vectorObs = agentInfo[agent].stackedVectorObservation;
for (var j = 0; j < vecObsSizeT; j++)
{
tensorProxy.Data[agentIndex, j] = vectorObs[j];
}
agentIndex++;
}
}
}
///
/// Generates the Tensor corresponding to the Recurrent input : Will be a two
/// dimensional float array of dimension [batchSize x memorySize].
/// It will use the Memory data contained in the agentInfo to fill the data
/// of the tensor.
///
public class RecurrentInputGenerator : TensorGenerator.Generator
{
private ITensorAllocator _allocator;
public RecurrentInputGenerator(ITensorAllocator allocator)
{
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
var memorySize = tensorProxy.Shape[tensorProxy.Shape.Length - 1];
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
var memory = agentInfo[agent].memories;
if (memory == null)
{
agentIndex++;
continue;
}
for (var j = 0; j < Math.Min(memorySize, memory.Count); j++)
{
if (j >= memory.Count)
{
break;
}
tensorProxy.Data[agentIndex, j] = memory[j];
}
agentIndex++;
}
}
}
public class BarracudaRecurrentInputGenerator : TensorGenerator.Generator
{
private int memoriesCount;
private int memoryIndex;
private ITensorAllocator _allocator;
public BarracudaRecurrentInputGenerator(int memoryIndex, ITensorAllocator allocator)
{
this.memoryIndex = memoryIndex;
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
var memorySize = (int)tensorProxy.Shape[tensorProxy.Shape.Length - 1];
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
var memory = agentInfo[agent].memories;
int offset = memorySize * memoryIndex;
if (memory == null)
{
agentIndex++;
continue;
}
for (var j = 0; j < memorySize; j++)
{
if (j >= memory.Count)
{
break;
}
tensorProxy.Data[agentIndex, j] = memory[j + offset];
}
agentIndex++;
}
}
}
///
/// Generates the Tensor corresponding to the Previous Action input : Will be a two
/// dimensional integer array of dimension [batchSize x actionSize].
/// It will use the previous action data contained in the agentInfo to fill the data
/// of the tensor.
///
public class PreviousActionInputGenerator : TensorGenerator.Generator
{
private ITensorAllocator _allocator;
public PreviousActionInputGenerator(ITensorAllocator allocator)
{
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
var actionSize = tensorProxy.Shape[tensorProxy.Shape.Length - 1];
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
var pastAction = agentInfo[agent].storedVectorActions;
for (var j = 0; j < actionSize; j++)
{
tensorProxy.Data[agentIndex, j] = pastAction[j];
}
agentIndex++;
}
}
}
///
/// Generates the Tensor corresponding to the Action Mask input : Will be a two
/// dimensional float array of dimension [batchSize x numActionLogits].
/// It will use the Action Mask data contained in the agentInfo to fill the data
/// of the tensor.
///
public class ActionMaskInputGenerator : TensorGenerator.Generator
{
private ITensorAllocator _allocator;
public ActionMaskInputGenerator(ITensorAllocator allocator)
{
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
var maskSize = tensorProxy.Shape[tensorProxy.Shape.Length - 1];
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
var maskList = agentInfo[agent].actionMasks;
for (var j = 0; j < maskSize; j++)
{
var isUnmasked = (maskList != null && maskList[j]) ? 0.0f : 1.0f;
tensorProxy.Data[agentIndex, j] = isUnmasked;
}
agentIndex++;
}
}
}
///
/// Generates the Tensor corresponding to the Epsilon input : Will be a two
/// dimensional float array of dimension [batchSize x actionSize].
/// It will use the generate random input data from a normal Distribution.
///
public class RandomNormalInputGenerator : TensorGenerator.Generator
{
private RandomNormal _randomNormal;
private ITensorAllocator _allocator;
public RandomNormalInputGenerator(int seed, ITensorAllocator allocator)
{
_randomNormal = new RandomNormal(seed);
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
_randomNormal.FillTensor(tensorProxy);
}
}
///
/// Generates the Tensor corresponding to the Visual Observation input : Will be a 4
/// dimensional float array of dimension [batchSize x width x heigth x numChannels].
/// It will use the Texture input data contained in the agentInfo to fill the data
/// of the tensor.
///
public class VisualObservationInputGenerator : TensorGenerator.Generator
{
private int _index;
private bool _grayScale;
private ITensorAllocator _allocator;
public VisualObservationInputGenerator(int index, bool grayScale, ITensorAllocator allocator)
{
_index = index;
_grayScale = grayScale;
_allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary agentInfo)
{
var textures = agentInfo.Keys.Select(
agent => agentInfo[agent].visualObservations[_index]).ToList();
TensorUtils.ResizeTensor(tensorProxy, batchSize, _allocator);
Utilities.TextureToTensorProxy(tensorProxy, textures, _grayScale, _allocator);
}
}
}