from typing import Any, Dict, List import numpy as np from mlagents.envs.brain import BrainInfo from mlagents.trainers.components.reward_signals import RewardSignal, RewardSignalResult class ExtrinsicRewardSignal(RewardSignal): @classmethod def check_config( cls, config_dict: Dict[str, Any], param_keys: List[str] = None ) -> None: """ Checks the config and throw an exception if a hyperparameter is missing. Extrinsic requires strength and gamma at minimum. """ param_keys = ["strength", "gamma"] super().check_config(config_dict, param_keys) def evaluate( self, current_info: BrainInfo, action: np.array, next_info: BrainInfo ) -> RewardSignalResult: """ Evaluates the reward for the agents present in current_info given the next_info :param current_info: The current BrainInfo. :param next_info: The BrainInfo from the next timestep. :return: a RewardSignalResult of (scaled intrinsic reward, unscaled intrinsic reward) provided by the generator """ unscaled_reward = np.array(next_info.rewards, dtype=np.float32) scaled_reward = self.strength * unscaled_reward return RewardSignalResult(scaled_reward, unscaled_reward) def evaluate_batch(self, mini_batch: Dict[str, np.array]) -> RewardSignalResult: env_rews = np.array(mini_batch["environment_rewards"]) return RewardSignalResult(self.strength * env_rews, env_rews)