using System.Collections; using System.Collections.Generic; using UnityEngine; #if UNITY_EDITOR using UnityEditor; #endif using System.Linq; #if ENABLE_TENSORFLOW using TensorFlow; #endif /// CoreBrain which decides actions using internally embedded TensorFlow model. public class CoreBrainInternal : ScriptableObject, CoreBrain { [SerializeField] [Tooltip("If checked, the brain will broadcast states and actions to Python.")] #pragma warning disable private bool broadcast = true; #pragma warning restore [System.Serializable] private struct TensorFlowAgentPlaceholder { public enum tensorType { Integer, FloatingPoint } ; public string name; public tensorType valueType; public float minValue; public float maxValue; } ExternalCommunicator coord; [Tooltip("This must be the bytes file corresponding to the pretrained Tensorflow graph.")] /// Modify only in inspector : Reference to the Graph asset public TextAsset graphModel; /// Modify only in inspector : If a scope was used when training the model, specify it here public string graphScope; [SerializeField] [Tooltip("If your graph takes additional inputs that are fixed (example: noise level) you can specify them here.")] /// Modify only in inspector : If your graph takes additional inputs that are fixed you can specify them here. private TensorFlowAgentPlaceholder[] graphPlaceholders; /// Modify only in inspector : Name of the placholder of the batch size public string BatchSizePlaceholderName = "batch_size"; /// Modify only in inspector : Name of the state placeholder public string VectorObservationPlacholderName = "vector_observation"; /// Modify only in inspector : Name of the recurrent input public string RecurrentInPlaceholderName = "recurrent_in"; /// Modify only in inspector : Name of the recurrent output public string RecurrentOutPlaceholderName = "recurrent_out"; /// Modify only in inspector : Names of the observations placeholders public string[] VisualObservationPlaceholderName; /// Modify only in inspector : Name of the action node public string ActionPlaceholderName = "action"; /// Modify only in inspector : Name of the previous action node public string PreviousActionPlaceholderName = "prev_action"; #if ENABLE_TENSORFLOW TFGraph graph; TFSession session; bool hasRecurrent; bool hasState; bool hasBatchSize; bool hasPrevAction; float[,] inputState; int[] inputPrevAction; List observationMatrixList; float[,] inputOldMemories; List texturesHolder; int memorySize; #endif /// Reference to the brain that uses this CoreBrainInternal public Brain brain; /// Create the reference to the brain public void SetBrain(Brain b) { brain = b; } /// Loads the tensorflow graph model to generate a TFGraph object public void InitializeCoreBrain(Communicator communicator) { #if ENABLE_TENSORFLOW #if UNITY_ANDROID // This needs to ba called only once and will raise an exception if // there are multiple internal brains try{ TensorFlowSharp.Android.NativeBinding.Init(); } catch{ } #endif if ((communicator == null) || (!broadcast)) { coord = null; } else if (communicator is ExternalCommunicator) { coord = (ExternalCommunicator)communicator; coord.SubscribeBrain(brain); } if (graphModel != null) { graph = new TFGraph(); graph.Import(graphModel.bytes); session = new TFSession(graph); // TODO: Make this a loop over a dynamic set of graph inputs if ((graphScope.Length > 1) && (graphScope[graphScope.Length - 1] != '/')) { graphScope = graphScope + '/'; } if (graph[graphScope + BatchSizePlaceholderName] != null) { hasBatchSize = true; } if ((graph[graphScope + RecurrentInPlaceholderName] != null) && (graph[graphScope + RecurrentOutPlaceholderName] != null)) { hasRecurrent = true; var runner = session.GetRunner(); runner.Fetch(graph[graphScope + "memory_size"][0]); var networkOutput = runner.Run()[0].GetValue(); memorySize = (int)networkOutput; } if (graph[graphScope + VectorObservationPlacholderName] != null) { hasState = true; } if (graph[graphScope + PreviousActionPlaceholderName] != null) { hasPrevAction = true; } } observationMatrixList = new List(); texturesHolder = new List(); #endif } /// Uses the stored information to run the tensorflow graph and generate /// the actions. public void DecideAction(Dictionary agentInfo) { #if ENABLE_TENSORFLOW if (coord != null) { coord.GiveBrainInfo(brain, agentInfo); } int currentBatchSize = agentInfo.Count(); List agentList = agentInfo.Keys.ToList(); if (currentBatchSize == 0) { return; } // Create the state tensor if (hasState) { int stateLength = 1; if (brain.brainParameters.vectorObservationSpaceType == SpaceType.continuous) { stateLength = brain.brainParameters.vectorObservationSize; } inputState = new float[currentBatchSize, stateLength * brain.brainParameters.numStackedVectorObservations]; var i = 0; foreach (Agent agent in agentList) { List state_list = agentInfo[agent].stackedVectorObservation; for (int j = 0; j < stateLength * brain.brainParameters.numStackedVectorObservations; j++) { inputState[i, j] = state_list[j]; } i++; } } // Create the state tensor if (hasPrevAction) { inputPrevAction = new int[currentBatchSize]; var i = 0; foreach (Agent agent in agentList) { float[] action_list = agentInfo[agent].storedVectorActions; inputPrevAction[i] = Mathf.FloorToInt(action_list[0]); i++; } } observationMatrixList.Clear(); for (int observationIndex = 0; observationIndex < brain.brainParameters.cameraResolutions.Count(); observationIndex++){ texturesHolder.Clear(); foreach (Agent agent in agentList){ texturesHolder.Add(agentInfo[agent].visualObservations[observationIndex]); } observationMatrixList.Add( BatchVisualObservations(texturesHolder, brain.brainParameters.cameraResolutions[observationIndex].blackAndWhite)); } // Create the recurrent tensor if (hasRecurrent) { // Need to have variable memory size inputOldMemories = new float[currentBatchSize, memorySize]; var i = 0; foreach (Agent agent in agentList) { float[] m = agentInfo[agent].memories.ToArray(); for (int j = 0; j < m.Count(); j++) { inputOldMemories[i, j] = m[j]; } i++; } } var runner = session.GetRunner(); try { runner.Fetch(graph[graphScope + ActionPlaceholderName][0]); } catch { throw new UnityAgentsException(string.Format(@"The node {0} could not be found. Please make sure the graphScope {1} is correct", graphScope + ActionPlaceholderName, graphScope)); } if (hasBatchSize) { runner.AddInput(graph[graphScope + BatchSizePlaceholderName][0], new int[] { currentBatchSize }); } foreach (TensorFlowAgentPlaceholder placeholder in graphPlaceholders) { try { if (placeholder.valueType == TensorFlowAgentPlaceholder.tensorType.FloatingPoint) { runner.AddInput(graph[graphScope + placeholder.name][0], new float[] { Random.Range(placeholder.minValue, placeholder.maxValue) }); } else if (placeholder.valueType == TensorFlowAgentPlaceholder.tensorType.Integer) { runner.AddInput(graph[graphScope + placeholder.name][0], new int[] { Random.Range((int)placeholder.minValue, (int)placeholder.maxValue + 1) }); } } catch { throw new UnityAgentsException(string.Format(@"One of the Tensorflow placeholder cound nout be found. In brain {0}, there are no {1} placeholder named {2}.", brain.gameObject.name, placeholder.valueType.ToString(), graphScope + placeholder.name)); } } // Create the state tensor if (hasState) { if (brain.brainParameters.vectorObservationSpaceType == SpaceType.discrete) { var discreteInputState = new int[currentBatchSize, 1]; for (int i = 0; i < currentBatchSize; i++) { discreteInputState[i, 0] = (int)inputState[i, 0]; } runner.AddInput(graph[graphScope + VectorObservationPlacholderName][0], discreteInputState); } else { runner.AddInput(graph[graphScope + VectorObservationPlacholderName][0], inputState); } } // Create the previous action tensor if (hasPrevAction) { runner.AddInput(graph[graphScope + PreviousActionPlaceholderName][0], inputPrevAction); } // Create the observation tensors for (int obs_number = 0; obs_number < brain.brainParameters.cameraResolutions.Length; obs_number++) { runner.AddInput(graph[graphScope + VisualObservationPlaceholderName[obs_number]][0], observationMatrixList[obs_number]); } if (hasRecurrent) { runner.AddInput(graph[graphScope + "sequence_length"][0], 1); runner.AddInput(graph[graphScope + RecurrentInPlaceholderName][0], inputOldMemories); runner.Fetch(graph[graphScope + RecurrentOutPlaceholderName][0]); } TFTensor[] networkOutput; try { networkOutput = runner.Run(); } catch (TFException e) { string errorMessage = e.Message; try { errorMessage = string.Format(@"The tensorflow graph needs an input for {0} of type {1}", e.Message.Split(new string[] { "Node: " }, 0)[1].Split('=')[0], e.Message.Split(new string[] { "dtype=" }, 0)[1].Split(',')[0]); } finally { throw new UnityAgentsException(errorMessage); } } // Create the recurrent tensor if (hasRecurrent) { float[,] recurrent_tensor = networkOutput[1].GetValue() as float[,]; var i = 0; foreach (Agent agent in agentList) { var m = new float[memorySize]; for (int j = 0; j < memorySize; j++) { m[j] = recurrent_tensor[i, j]; } agent.UpdateMemoriesAction(m.ToList()); i++; } } if (brain.brainParameters.vectorActionSpaceType == SpaceType.continuous) { var output = networkOutput[0].GetValue() as float[,]; var i = 0; foreach (Agent agent in agentList) { var a = new float[brain.brainParameters.vectorActionSize]; for (int j = 0; j < brain.brainParameters.vectorActionSize; j++) { a[j] = output[i, j]; } agent.UpdateVectorAction(a); i++; } } else if (brain.brainParameters.vectorActionSpaceType == SpaceType.discrete) { long[,] output = networkOutput[0].GetValue() as long[,]; var i = 0; foreach (Agent agent in agentList) { var a = new float[1] { (float)(output[i, 0]) }; agent.UpdateVectorAction(a); i++; } } #else if (agentInfo.Count > 0) { throw new UnityAgentsException(string.Format(@"The brain {0} was set to Internal but the Tensorflow library is not present in the Unity project.", brain.gameObject.name)); } #endif } /// Displays the parameters of the CoreBrainInternal in the Inspector public void OnInspector() { #if ENABLE_TENSORFLOW && UNITY_EDITOR EditorGUILayout.LabelField("", GUI.skin.horizontalSlider); broadcast = EditorGUILayout.Toggle(new GUIContent("Broadcast", "If checked, the brain will broadcast states and actions to Python."), broadcast); var serializedBrain = new SerializedObject(this); GUILayout.Label("Edit the Tensorflow graph parameters here"); var tfGraphModel = serializedBrain.FindProperty("graphModel"); serializedBrain.Update(); EditorGUILayout.ObjectField(tfGraphModel); serializedBrain.ApplyModifiedProperties(); if (graphModel == null) { EditorGUILayout.HelpBox("Please provide a tensorflow graph as a bytes file.", MessageType.Error); } graphScope = EditorGUILayout.TextField(new GUIContent("Graph Scope", "If you set a scope while training your tensorflow model, " + "all your placeholder name will have a prefix. You must specify that prefix here."), graphScope); if (BatchSizePlaceholderName == "") { BatchSizePlaceholderName = "batch_size"; } BatchSizePlaceholderName = EditorGUILayout.TextField(new GUIContent("Batch Size Node Name", "If the batch size is one of " + "the inputs of your graph, you must specify the name if the placeholder here."), BatchSizePlaceholderName); if (VectorObservationPlacholderName == "") { VectorObservationPlacholderName = "state"; } VectorObservationPlacholderName = EditorGUILayout.TextField(new GUIContent("Vector Observation Node Name", "If your graph uses the state as an input, " + "you must specify the name if the placeholder here."), VectorObservationPlacholderName); if (RecurrentInPlaceholderName == "") { RecurrentInPlaceholderName = "recurrent_in"; } RecurrentInPlaceholderName = EditorGUILayout.TextField(new GUIContent("Recurrent Input Node Name", "If your graph uses a " + "recurrent input / memory as input and outputs new recurrent input / memory, " + "you must specify the name if the input placeholder here."), RecurrentInPlaceholderName); if (RecurrentOutPlaceholderName == "") { RecurrentOutPlaceholderName = "recurrent_out"; } RecurrentOutPlaceholderName = EditorGUILayout.TextField(new GUIContent("Recurrent Output Node Name", " If your graph uses a " + "recurrent input / memory as input and outputs new recurrent input / memory, you must specify the name if " + "the output placeholder here."), RecurrentOutPlaceholderName); if (brain.brainParameters.cameraResolutions != null) { if (brain.brainParameters.cameraResolutions.Count() > 0) { if (VisualObservationPlaceholderName == null) { VisualObservationPlaceholderName = new string[brain.brainParameters.cameraResolutions.Count()]; } if (VisualObservationPlaceholderName.Count() != brain.brainParameters.cameraResolutions.Count()) { VisualObservationPlaceholderName = new string[brain.brainParameters.cameraResolutions.Count()]; } for (int obs_number = 0; obs_number < brain.brainParameters.cameraResolutions.Count(); obs_number++) { if ((VisualObservationPlaceholderName[obs_number] == "") || (VisualObservationPlaceholderName[obs_number] == null)) { VisualObservationPlaceholderName[obs_number] = "visual_observation_" + obs_number; } } var opn = serializedBrain.FindProperty("VisualObservationPlaceholderName"); serializedBrain.Update(); EditorGUILayout.PropertyField(opn, true); serializedBrain.ApplyModifiedProperties(); } } if (ActionPlaceholderName == "") { ActionPlaceholderName = "action"; } ActionPlaceholderName = EditorGUILayout.TextField(new GUIContent("Action Node Name", "Specify the name of the " + "placeholder corresponding to the actions of the brain in your graph. If the action space type is " + "continuous, the output must be a one dimensional tensor of float of length Action Space Size, " + "if the action space type is discrete, the output must be a one dimensional tensor of int " + "of length 1."), ActionPlaceholderName); var tfPlaceholders = serializedBrain.FindProperty("graphPlaceholders"); serializedBrain.Update(); EditorGUILayout.PropertyField(tfPlaceholders, true); serializedBrain.ApplyModifiedProperties(); #endif #if !ENABLE_TENSORFLOW && UNITY_EDITOR EditorGUILayout.HelpBox ( "You need to install and enable the TensorflowSharp plugin in"+ "order to use the internal brain.", MessageType.Error); if (GUILayout.Button("Show me how")) { Application.OpenURL("https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Getting-Started-with-Balance-Ball.md#embedding-the-trained-brain-into-the-unity-environment-experimental"); } #endif } /// /// Converts a list of Texture2D into a Tensor. /// /// /// A 4 dimensional float Tensor of dimension /// [batch_size, height, width, channel]. /// Where batch_size is the number of input textures, /// height corresponds to the height of the texture, /// width corresponds to the width of the texture, /// channel corresponds to the number of channels extracted from the /// input textures (based on the input blackAndWhite flag /// (3 if the flag is false, 1 otherwise). /// The values of the Tensor are between 0 and 1. /// /// /// The list of textures to be put into the tensor. /// Note that the textures must have same width and height. /// /// /// If set to true the textures /// will be converted to grayscale before being stored in the tensor. /// public static float[,,,] BatchVisualObservations( List textures, bool blackAndWhite) { int batchSize = textures.Count(); int width = textures[0].width; int height = textures[0].height; int pixels = 0; if (blackAndWhite) pixels = 1; else pixels = 3; float[,,,] result = new float[batchSize, height, width, pixels]; for (int b = 0; b < batchSize; b++) { Color32[] cc = textures[b].GetPixels32(); for (int w = 0; w < width; w++) { for (int h = 0; h < height; h++) { Color32 currentPixel = cc[h * width + w]; if (!blackAndWhite) { // For Color32, the r, g and b values are between // 0 and 255. result[b, textures[b].height - h - 1, w, 0] = currentPixel.r / 255.0f; result[b, textures[b].height - h - 1, w, 1] = currentPixel.g / 255.0f; result[b, textures[b].height - h - 1, w, 2] = currentPixel.b / 255.0f; } else { result[b, textures[b].height - h - 1, w, 0] = (currentPixel.r + currentPixel.g + currentPixel.b) / 3; } } } } return result; } }