using System.Collections.Generic; using System; using Barracuda; using MLAgents.InferenceBrain.Utils; using MLAgents.Sensor; using UnityEngine; namespace MLAgents.InferenceBrain { /// /// Reshapes a Tensor so that its first dimension becomes equal to the current batch size /// and initializes its content to be zeros. Will only work on 2-dimensional tensors. /// The second dimension of the Tensor will not be modified. /// public class BiDimensionalOutputGenerator : TensorGenerator.IGenerator { readonly ITensorAllocator m_Allocator; public BiDimensionalOutputGenerator(ITensorAllocator allocator) { m_Allocator = allocator; } public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable agents) { TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator); } } /// /// Generates the Tensor corresponding to the BatchSize input : Will be a one dimensional /// integer array of size 1 containing the batch size. /// public class BatchSizeGenerator : TensorGenerator.IGenerator { readonly ITensorAllocator m_Allocator; public BatchSizeGenerator(ITensorAllocator allocator) { m_Allocator = allocator; } public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable agents) { tensorProxy.data?.Dispose(); tensorProxy.data = m_Allocator.Alloc(new TensorShape(1, 1)); tensorProxy.data[0] = batchSize; } } /// /// Generates the Tensor corresponding to the SequenceLength input : Will be a one /// dimensional integer array of size 1 containing 1. /// Note : the sequence length is always one since recurrent networks only predict for /// one step at the time. /// public class SequenceLengthGenerator : TensorGenerator.IGenerator { readonly ITensorAllocator m_Allocator; public SequenceLengthGenerator(ITensorAllocator allocator) { m_Allocator = allocator; } public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable agents) { tensorProxy.shape = new long[0]; tensorProxy.data?.Dispose(); tensorProxy.data = m_Allocator.Alloc(new TensorShape(1, 1)); tensorProxy.data[0] = 1; } } /// /// Generates the Tensor corresponding to the VectorObservation input : Will be a two /// dimensional float array of dimension [batchSize x vectorObservationSize]. /// It will use the Vector Observation data contained in the agentInfo to fill the data /// of the tensor. /// public class VectorObservationGenerator : TensorGenerator.IGenerator { readonly ITensorAllocator m_Allocator; List m_SensorIndices = new List(); WriteAdapter m_WriteAdapter = new WriteAdapter(); public VectorObservationGenerator(ITensorAllocator allocator) { m_Allocator = allocator; } public void AddSensorIndex(int sensorIndex) { m_SensorIndices.Add(sensorIndex); } public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable agents) { TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator); var vecObsSizeT = tensorProxy.shape[tensorProxy.shape.Length - 1]; var agentIndex = 0; foreach (var agent in agents) { var tensorOffset = 0; // Write each sensor consecutively to the tensor foreach (var sensorIndex in m_SensorIndices) { var sensor = agent.sensors[sensorIndex]; m_WriteAdapter.SetTarget(tensorProxy, agentIndex, tensorOffset); var numWritten = sensor.Write(m_WriteAdapter); tensorOffset += numWritten; } Debug.AssertFormat( tensorOffset == vecObsSizeT, "mismatch between vector observation size ({0}) and number of observations written ({1})", vecObsSizeT, tensorOffset ); agentIndex++; } } } /// /// Generates the Tensor corresponding to the Recurrent input : Will be a two /// dimensional float array of dimension [batchSize x memorySize]. /// It will use the Memory data contained in the agentInfo to fill the data /// of the tensor. /// public class RecurrentInputGenerator : TensorGenerator.IGenerator { private readonly ITensorAllocator m_Allocator; Dictionary> m_Memories; public RecurrentInputGenerator( ITensorAllocator allocator, Dictionary> memories) { m_Allocator = allocator; m_Memories = memories; } public void Generate( TensorProxy tensorProxy, int batchSize, IEnumerable agents) { TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator); var memorySize = tensorProxy.shape[tensorProxy.shape.Length - 1]; var agentIndex = 0; foreach (var agent in agents) { var info = agent.Info; List memory; if (agent.Info.done) { m_Memories.Remove(agent.Info.id); } if (!m_Memories.TryGetValue(agent.Info.id, out memory)) { for (var j = 0; j < memorySize; j++) { tensorProxy.data[agentIndex, j] = 0; } agentIndex++; continue; } for (var j = 0; j < Math.Min(memorySize, memory.Count); j++) { if (j >= memory.Count) { break; } tensorProxy.data[agentIndex, j] = memory[j]; } agentIndex++; } } } public class BarracudaRecurrentInputGenerator : TensorGenerator.IGenerator { int m_MemoriesCount; readonly int m_MemoryIndex; readonly ITensorAllocator m_Allocator; Dictionary> m_Memories; public BarracudaRecurrentInputGenerator( int memoryIndex, ITensorAllocator allocator, Dictionary> memories) { m_MemoryIndex = memoryIndex; m_Allocator = allocator; m_Memories = memories; } public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable agents) { TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator); var memorySize = (int)tensorProxy.shape[tensorProxy.shape.Length - 1]; var agentIndex = 0; foreach (var agent in agents) { var offset = memorySize * m_MemoryIndex; List memory; if (agent.Info.done) { m_Memories.Remove(agent.Info.id); } if (!m_Memories.TryGetValue(agent.Info.id, out memory)) { for (var j = 0; j < memorySize; j++) { tensorProxy.data[agentIndex, j] = 0; } agentIndex++; continue; } for (var j = 0; j < memorySize; j++) { if (j >= memory.Count) { break; } tensorProxy.data[agentIndex, j] = memory[j + offset]; } agentIndex++; } } } /// /// Generates the Tensor corresponding to the Previous Action input : Will be a two /// dimensional integer array of dimension [batchSize x actionSize]. /// It will use the previous action data contained in the agentInfo to fill the data /// of the tensor. /// public class PreviousActionInputGenerator : TensorGenerator.IGenerator { readonly ITensorAllocator m_Allocator; public PreviousActionInputGenerator(ITensorAllocator allocator) { m_Allocator = allocator; } public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable agents) { TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator); var actionSize = tensorProxy.shape[tensorProxy.shape.Length - 1]; var agentIndex = 0; foreach (var agent in agents) { var info = agent.Info; var pastAction = info.storedVectorActions; for (var j = 0; j < actionSize; j++) { tensorProxy.data[agentIndex, j] = pastAction[j]; } agentIndex++; } } } /// /// Generates the Tensor corresponding to the Action Mask input : Will be a two /// dimensional float array of dimension [batchSize x numActionLogits]. /// It will use the Action Mask data contained in the agentInfo to fill the data /// of the tensor. /// public class ActionMaskInputGenerator : TensorGenerator.IGenerator { readonly ITensorAllocator m_Allocator; public ActionMaskInputGenerator(ITensorAllocator allocator) { m_Allocator = allocator; } public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable agents) { TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator); var maskSize = tensorProxy.shape[tensorProxy.shape.Length - 1]; var agentIndex = 0; foreach (var agent in agents) { var agentInfo = agent.Info; var maskList = agentInfo.actionMasks; for (var j = 0; j < maskSize; j++) { var isUnmasked = (maskList != null && maskList[j]) ? 0.0f : 1.0f; tensorProxy.data[agentIndex, j] = isUnmasked; } agentIndex++; } } } /// /// Generates the Tensor corresponding to the Epsilon input : Will be a two /// dimensional float array of dimension [batchSize x actionSize]. /// It will use the generate random input data from a normal Distribution. /// public class RandomNormalInputGenerator : TensorGenerator.IGenerator { readonly RandomNormal m_RandomNormal; readonly ITensorAllocator m_Allocator; public RandomNormalInputGenerator(int seed, ITensorAllocator allocator) { m_RandomNormal = new RandomNormal(seed); m_Allocator = allocator; } public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable agents) { TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator); TensorUtils.FillTensorWithRandomNormal(tensorProxy, m_RandomNormal); } } /// /// Generates the Tensor corresponding to the Visual Observation input : Will be a 4 /// dimensional float array of dimension [batchSize x width x height x numChannels]. /// It will use the Texture input data contained in the agentInfo to fill the data /// of the tensor. /// public class VisualObservationInputGenerator : TensorGenerator.IGenerator { readonly int m_SensorIndex; readonly ITensorAllocator m_Allocator; WriteAdapter m_WriteAdapter = new WriteAdapter(); public VisualObservationInputGenerator( int sensorIndex, ITensorAllocator allocator) { m_SensorIndex = sensorIndex; m_Allocator = allocator; } public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable agents) { TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator); var agentIndex = 0; foreach (var agent in agents) { var sensor = agent.sensors[m_SensorIndex]; m_WriteAdapter.SetTarget(tensorProxy, agentIndex, 0); sensor.Write(m_WriteAdapter); agentIndex++; } } } }