import attr import pytest from mlagents.trainers.tests.simple_test_envs import ( SimpleEnvironment, MemoryEnvironment, ) from mlagents.trainers.settings import NetworkSettings, FrameworkType from mlagents.trainers.tests.dummy_config import ppo_dummy_config, sac_dummy_config from mlagents.trainers.tests.check_env_trains import check_environment_trains BRAIN_NAME = "1D" PPO_TORCH_CONFIG = attr.evolve(ppo_dummy_config(), framework=FrameworkType.PYTORCH) SAC_TORCH_CONFIG = attr.evolve(sac_dummy_config(), framework=FrameworkType.PYTORCH) @pytest.mark.parametrize("action_size", [(1, 1), (2, 2), (1, 2), (2, 1)]) def test_hybrid_ppo(action_size): env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_size, step_size=0.8) new_network_settings = attr.evolve(PPO_TORCH_CONFIG.network_settings) new_hyperparams = attr.evolve( PPO_TORCH_CONFIG.hyperparameters, batch_size=64, buffer_size=1024 ) config = attr.evolve( PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, network_settings=new_network_settings, max_steps=10000, ) check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) @pytest.mark.parametrize("num_visual", [1, 2]) def test_hybrid_visual_ppo(num_visual): env = SimpleEnvironment( [BRAIN_NAME], num_visual=num_visual, num_vector=0, action_sizes=(1, 1) ) new_hyperparams = attr.evolve( PPO_TORCH_CONFIG.hyperparameters, learning_rate=3.0e-4 ) config = attr.evolve(PPO_TORCH_CONFIG, hyperparameters=new_hyperparams) check_environment_trains(env, {BRAIN_NAME: config}) def test_hybrid_recurrent_ppo(): env = MemoryEnvironment([BRAIN_NAME], action_sizes=(1, 1), step_size=0.5) new_network_settings = attr.evolve( PPO_TORCH_CONFIG.network_settings, memory=NetworkSettings.MemorySettings(memory_size=16), ) new_hyperparams = attr.evolve( PPO_TORCH_CONFIG.hyperparameters, learning_rate=1.0e-3, batch_size=64, buffer_size=512, ) config = attr.evolve( PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, network_settings=new_network_settings, max_steps=3000, ) check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) @pytest.mark.parametrize("action_size", [(1, 1), (2, 2), (1, 2), (2, 1)]) def test_hybrid_sac(action_size): env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_size, step_size=0.8) new_hyperparams = attr.evolve( SAC_TORCH_CONFIG.hyperparameters, buffer_size=50000, batch_size=256, buffer_init_steps=2000, ) config = attr.evolve( SAC_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=6000 ) check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) @pytest.mark.parametrize("num_visual", [1, 2]) def test_hybrid_visual_sac(num_visual): env = SimpleEnvironment( [BRAIN_NAME], num_visual=num_visual, num_vector=0, action_sizes=(1, 1) ) new_hyperparams = attr.evolve( SAC_TORCH_CONFIG.hyperparameters, buffer_size=50000, batch_size=128, learning_rate=3.0e-4, ) config = attr.evolve( SAC_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=3000 ) check_environment_trains(env, {BRAIN_NAME: config}) def test_hybrid_recurrent_sac(): env = MemoryEnvironment([BRAIN_NAME], action_sizes=(1, 1), step_size=0.5) new_networksettings = attr.evolve( SAC_TORCH_CONFIG.network_settings, memory=NetworkSettings.MemorySettings(memory_size=16, sequence_length=16), ) new_hyperparams = attr.evolve( SAC_TORCH_CONFIG.hyperparameters, batch_size=256, learning_rate=1e-3, buffer_init_steps=1000, steps_per_update=2, ) config = attr.evolve( SAC_TORCH_CONFIG, hyperparameters=new_hyperparams, network_settings=new_networksettings, max_steps=3500, ) check_environment_trains(env, {BRAIN_NAME: config})