using System.Collections.Generic; using Barracuda; using System; namespace MLAgents.InferenceBrain { /// /// Mapping between the output tensor names and the method that will use the /// output tensors and the Agents present in the batch to update their action, memories and /// value estimates. /// A TensorApplier implements a Dictionary of strings (node names) to an Action. /// This action takes as input the tensor and the Dictionary of Agent to AgentInfo for /// the current batch. /// public class TensorApplier { /// /// A tensor Applier's Execute method takes a tensor and a Dictionary of Agent to AgentInfo. /// Uses the data contained inside the tensor to modify the state of the Agent. The Tensors /// are assumed to have the batch size on the first dimension and the agents to be ordered /// the same way in the dictionary and in the tensor. /// public interface IApplier { /// /// Applies the values in the Tensor to the Agents present in the agentInfos /// /// /// The Tensor containing the data to be applied to the Agents /// /// /// List of Agents that will receive the values of the Tensor. /// void Apply(TensorProxy tensorProxy, IEnumerable actions); } readonly Dictionary m_Dict = new Dictionary(); /// /// Returns a new TensorAppliers object. /// /// The BrainParameters used to determine what Appliers will be /// used /// The seed the Appliers will be initialized with. /// Tensor allocator /// Dictionary of AgentInfo.id to memory used to pass to the inference model. /// public TensorApplier( BrainParameters bp, int seed, ITensorAllocator allocator, Dictionary> memories, object barracudaModel = null) { if (bp.vectorActionSpaceType == SpaceType.Continuous) { m_Dict[TensorNames.ActionOutput] = new ContinuousActionOutputApplier(); } else { m_Dict[TensorNames.ActionOutput] = new DiscreteActionOutputApplier(bp.vectorActionSize, seed, allocator); } m_Dict[TensorNames.RecurrentOutput] = new MemoryOutputApplier(memories); if (barracudaModel != null) { var model = (Model)barracudaModel; for (var i = 0; i < model?.memories.Count; i++) { m_Dict[model.memories[i].output] = new BarracudaMemoryOutputApplier(model.memories.Count, i, memories); } } } /// /// Updates the state of the agents based on the data present in the tensor. /// /// Enumerable of tensors containing the data. /// List of Agents that will be updated using the tensor's data /// One of the tensor does not have an /// associated applier. public void ApplyTensors( IEnumerable tensors, IEnumerable actions) { foreach (var tensor in tensors) { if (!m_Dict.ContainsKey(tensor.name)) { throw new UnityAgentsException( $"Unknown tensorProxy expected as output : {tensor.name}"); } m_Dict[tensor.name].Apply(tensor, actions); } } } }