# # Unity ML-Agents Toolkit from typing import Dict, List from collections import defaultdict import abc import time from mlagents.trainers.optimizer.tf_optimizer import TFOptimizer from mlagents.trainers.buffer import AgentBuffer from mlagents.trainers.trainer import Trainer from mlagents.trainers.exception import UnityTrainerException from mlagents.trainers.components.reward_signals import RewardSignalResult from mlagents_envs.timers import hierarchical_timer from mlagents.trainers.agent_processor import AgentManagerQueue from mlagents.trainers.trajectory import Trajectory from mlagents.trainers.stats import StatsPropertyType RewardSignalResults = Dict[str, RewardSignalResult] class RLTrainer(Trainer): # pylint: disable=abstract-method """ This class is the base class for trainers that use Reward Signals. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Make sure we have at least one reward_signal if not self.trainer_parameters["reward_signals"]: raise UnityTrainerException( "No reward signals were defined. At least one must be used with {}.".format( self.__class__.__name__ ) ) # collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward # used for reporting only. We always want to report the environment reward to Tensorboard, regardless # of what reward signals are actually present. self.cumulative_returns_since_policy_update: List[float] = [] self.collected_rewards: Dict[str, Dict[str, int]] = { "environment": defaultdict(lambda: 0) } self.update_buffer: AgentBuffer = AgentBuffer() self._stats_reporter.add_property( StatsPropertyType.HYPERPARAMETERS, self.trainer_parameters ) def end_episode(self) -> None: """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. """ for rewards in self.collected_rewards.values(): for agent_id in rewards: rewards[agent_id] = 0 def _update_end_episode_stats(self, agent_id: str, optimizer: TFOptimizer) -> None: for name, rewards in self.collected_rewards.items(): if name == "environment": self.stats_reporter.add_stat( "Environment/Cumulative Reward", rewards.get(agent_id, 0) ) self.cumulative_returns_since_policy_update.append( rewards.get(agent_id, 0) ) self.reward_buffer.appendleft(rewards.get(agent_id, 0)) rewards[agent_id] = 0 else: self.stats_reporter.add_stat( optimizer.reward_signals[name].stat_name, rewards.get(agent_id, 0) ) rewards[agent_id] = 0 def _clear_update_buffer(self) -> None: """ Clear the buffers that have been built up during inference. """ self.update_buffer.reset_agent() @abc.abstractmethod def _is_ready_update(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to wether or not update_model() can be run """ return False @abc.abstractmethod def _update_policy(self) -> bool: """ Uses demonstration_buffer to update model. :return: Whether or not the policy was updated. """ pass def _increment_step(self, n_steps: int, name_behavior_id: str) -> None: """ Increment the step count of the trainer :param n_steps: number of steps to increment the step count by """ self.step += n_steps self.next_summary_step = self._get_next_summary_step() p = self.get_policy(name_behavior_id) if p: p.increment_step(n_steps) def _get_next_summary_step(self) -> int: """ Get the next step count that should result in a summary write. """ return self.step + (self.summary_freq - self.step % self.summary_freq) def _write_summary(self, step: int) -> None: """ Saves training statistics to Tensorboard. """ self.stats_reporter.add_stat("Is Training", float(self.should_still_train)) self.stats_reporter.write_stats(int(step)) @abc.abstractmethod def _process_trajectory(self, trajectory: Trajectory) -> None: """ Takes a trajectory and processes it, putting it into the update buffer. :param trajectory: The Trajectory tuple containing the steps to be processed. """ self._maybe_write_summary(self.get_step + len(trajectory.steps)) self._increment_step(len(trajectory.steps), trajectory.behavior_id) def _maybe_write_summary(self, step_after_process: int) -> None: """ If processing the trajectory will make the step exceed the next summary write, write the summary. This logic ensures summaries are written on the update step and not in between. :param step_after_process: the step count after processing the next trajectory. """ if step_after_process >= self.next_summary_step and self.get_step != 0: self._write_summary(self.next_summary_step) def advance(self) -> None: """ Steps the trainer, taking in trajectories and updates if ready. Will block and wait briefly if there are no trajectories. """ with hierarchical_timer("process_trajectory"): for traj_queue in self.trajectory_queues: # We grab at most the maximum length of the queue. # This ensures that even if the queue is being filled faster than it is # being emptied, the trajectories in the queue are on-policy. _queried = False for _ in range(traj_queue.qsize()): _queried = True try: t = traj_queue.get_nowait() self._process_trajectory(t) except AgentManagerQueue.Empty: break if self.threaded and not _queried: # Yield thread to avoid busy-waiting time.sleep(0.0001) if self.should_still_train: if self._is_ready_update(): with hierarchical_timer("_update_policy"): if self._update_policy(): for q in self.policy_queues: # Get policies that correspond to the policy queue in question q.put(self.get_policy(q.behavior_id)) else: self._clear_update_buffer()