import logging from typing import Optional import numpy as np from mlagents.tf_utils import tf from mlagents.trainers.models import LearningModel, EncoderType, LearningRateSchedule logger = logging.getLogger("mlagents.trainers") EPSILON = 1e-6 # Small value to avoid divide by zero class PPOModel(LearningModel): def __init__( self, brain, lr=1e-4, lr_schedule=LearningRateSchedule.LINEAR, h_size=128, epsilon=0.2, beta=1e-3, max_step=5e6, normalize=False, use_recurrent=False, num_layers=2, m_size=None, seed=0, stream_names=None, vis_encode_type=EncoderType.SIMPLE, ): """ Takes a Unity environment and model-specific hyper-parameters and returns the appropriate PPO agent model for the environment. :param brain: BrainInfo used to generate specific network graph. :param lr: Learning rate. :param lr_schedule: Learning rate decay schedule. :param h_size: Size of hidden layers :param epsilon: Value for policy-divergence threshold. :param beta: Strength of entropy regularization. :param max_step: Total number of training steps. :param normalize: Whether to normalize vector observation input. :param use_recurrent: Whether to use an LSTM layer in the network. :param num_layers Number of hidden layers between encoded input and policy & value layers :param m_size: Size of brain memory. :param seed: Seed to use for initialization of model. :param stream_names: List of names of value streams. Usually, a list of the Reward Signals being used. :return: a sub-class of PPOAgent tailored to the environment. """ LearningModel.__init__( self, m_size, normalize, use_recurrent, brain, seed, stream_names ) self.optimizer: Optional[tf.train.AdamOptimizer] = None self.grads = None self.update_batch: Optional[tf.Operation] = None if num_layers < 1: num_layers = 1 if brain.vector_action_space_type == "continuous": self.create_cc_actor_critic(h_size, num_layers, vis_encode_type) self.entropy = tf.ones_like(tf.reshape(self.value, [-1])) * self.entropy else: self.create_dc_actor_critic(h_size, num_layers, vis_encode_type) self.learning_rate = self.create_learning_rate( lr_schedule, lr, self.global_step, max_step ) self.create_losses( self.log_probs, self.old_log_probs, self.value_heads, self.entropy, beta, epsilon, lr, max_step, ) def create_cc_actor_critic( self, h_size: int, num_layers: int, vis_encode_type: EncoderType ) -> None: """ Creates Continuous control actor-critic model. :param h_size: Size of hidden linear layers. :param num_layers: Number of hidden linear layers. """ hidden_streams = self.create_observation_streams( 2, h_size, num_layers, vis_encode_type ) if self.use_recurrent: self.memory_in = tf.placeholder( shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in" ) _half_point = int(self.m_size / 2) hidden_policy, memory_policy_out = self.create_recurrent_encoder( hidden_streams[0], self.memory_in[:, :_half_point], self.sequence_length, name="lstm_policy", ) hidden_value, memory_value_out = self.create_recurrent_encoder( hidden_streams[1], self.memory_in[:, _half_point:], self.sequence_length, name="lstm_value", ) self.memory_out = tf.concat( [memory_policy_out, memory_value_out], axis=1, name="recurrent_out" ) else: hidden_policy = hidden_streams[0] hidden_value = hidden_streams[1] mu = tf.layers.dense( hidden_policy, self.act_size[0], activation=None, kernel_initializer=LearningModel.scaled_init(0.01), reuse=tf.AUTO_REUSE, ) self.log_sigma_sq = tf.get_variable( "log_sigma_squared", [self.act_size[0]], dtype=tf.float32, initializer=tf.zeros_initializer(), ) sigma_sq = tf.exp(self.log_sigma_sq) self.epsilon = tf.placeholder( shape=[None, self.act_size[0]], dtype=tf.float32, name="epsilon" ) _policy_out = mu + tf.sqrt(sigma_sq) * self.epsilon # Squash using tanh to ensure actions are always within [-1, 1] range. self.output_pre = tf.tanh(_policy_out) self.output = tf.identity(self.output_pre, name="action") self.selected_actions = tf.stop_gradient(self.output) # Compute probability of model output. all_probs = ( -0.5 * tf.square(tf.stop_gradient(_policy_out) - mu) / sigma_sq - 0.5 * tf.log(2.0 * np.pi) - 0.5 * self.log_sigma_sq ) # Correct for tanh squash (source: https://arxiv.org/abs/1801.01290) all_probs -= tf.reduce_sum( tf.log(1 - self.output_pre ** 2 + EPSILON), axis=1, keepdims=True ) self.all_log_probs = tf.identity(all_probs, name="action_probs") self.entropy = 0.5 * tf.reduce_mean( tf.log(2 * np.pi * np.e) + self.log_sigma_sq ) self.create_value_heads(self.stream_names, hidden_value) self.all_old_log_probs = tf.placeholder( shape=[None, self.act_size[0]], dtype=tf.float32, name="old_probabilities" ) # We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control. self.log_probs = tf.reduce_sum( (tf.identity(self.all_log_probs)), axis=1, keepdims=True ) self.old_log_probs = tf.reduce_sum( (tf.identity(self.all_old_log_probs)), axis=1, keepdims=True ) def create_dc_actor_critic( self, h_size: int, num_layers: int, vis_encode_type: EncoderType ) -> None: """ Creates Discrete control actor-critic model. :param h_size: Size of hidden linear layers. :param num_layers: Number of hidden linear layers. """ hidden_streams = self.create_observation_streams( 1, h_size, num_layers, vis_encode_type ) hidden = hidden_streams[0] if self.use_recurrent: self.prev_action = tf.placeholder( shape=[None, len(self.act_size)], dtype=tf.int32, name="prev_action" ) prev_action_oh = tf.concat( [ tf.one_hot(self.prev_action[:, i], self.act_size[i]) for i in range(len(self.act_size)) ], axis=1, ) hidden = tf.concat([hidden, prev_action_oh], axis=1) self.memory_in = tf.placeholder( shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in" ) hidden, memory_out = self.create_recurrent_encoder( hidden, self.memory_in, self.sequence_length ) self.memory_out = tf.identity(memory_out, name="recurrent_out") policy_branches = [] for size in self.act_size: policy_branches.append( tf.layers.dense( hidden, size, activation=None, use_bias=False, kernel_initializer=LearningModel.scaled_init(0.01), ) ) self.all_log_probs = tf.concat(policy_branches, axis=1, name="action_probs") self.action_masks = tf.placeholder( shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks" ) output, _, normalized_logits = self.create_discrete_action_masking_layer( self.all_log_probs, self.action_masks, self.act_size ) self.output = tf.identity(output) self.normalized_logits = tf.identity(normalized_logits, name="action") self.create_value_heads(self.stream_names, hidden) self.action_holder = tf.placeholder( shape=[None, len(policy_branches)], dtype=tf.int32, name="action_holder" ) self.action_oh = tf.concat( [ tf.one_hot(self.action_holder[:, i], self.act_size[i]) for i in range(len(self.act_size)) ], axis=1, ) self.selected_actions = tf.stop_gradient(self.action_oh) self.all_old_log_probs = tf.placeholder( shape=[None, sum(self.act_size)], dtype=tf.float32, name="old_probabilities" ) _, _, old_normalized_logits = self.create_discrete_action_masking_layer( self.all_old_log_probs, self.action_masks, self.act_size ) action_idx = [0] + list(np.cumsum(self.act_size)) self.entropy = tf.reduce_sum( ( tf.stack( [ tf.nn.softmax_cross_entropy_with_logits_v2( labels=tf.nn.softmax( self.all_log_probs[:, action_idx[i] : action_idx[i + 1]] ), logits=self.all_log_probs[ :, action_idx[i] : action_idx[i + 1] ], ) for i in range(len(self.act_size)) ], axis=1, ) ), axis=1, ) self.log_probs = tf.reduce_sum( ( tf.stack( [ -tf.nn.softmax_cross_entropy_with_logits_v2( labels=self.action_oh[:, action_idx[i] : action_idx[i + 1]], logits=normalized_logits[ :, action_idx[i] : action_idx[i + 1] ], ) for i in range(len(self.act_size)) ], axis=1, ) ), axis=1, keepdims=True, ) self.old_log_probs = tf.reduce_sum( ( tf.stack( [ -tf.nn.softmax_cross_entropy_with_logits_v2( labels=self.action_oh[:, action_idx[i] : action_idx[i + 1]], logits=old_normalized_logits[ :, action_idx[i] : action_idx[i + 1] ], ) for i in range(len(self.act_size)) ], axis=1, ) ), axis=1, keepdims=True, ) def create_losses( self, probs, old_probs, value_heads, entropy, beta, epsilon, lr, max_step ): """ Creates training-specific Tensorflow ops for PPO models. :param probs: Current policy probabilities :param old_probs: Past policy probabilities :param value_heads: Value estimate tensors from each value stream :param beta: Entropy regularization strength :param entropy: Current policy entropy :param epsilon: Value for policy-divergence threshold :param lr: Learning rate :param max_step: Total number of training steps. """ self.returns_holders = {} self.old_values = {} for name in value_heads.keys(): returns_holder = tf.placeholder( shape=[None], dtype=tf.float32, name="{}_returns".format(name) ) old_value = tf.placeholder( shape=[None], dtype=tf.float32, name="{}_value_estimate".format(name) ) self.returns_holders[name] = returns_holder self.old_values[name] = old_value self.advantage = tf.placeholder( shape=[None], dtype=tf.float32, name="advantages" ) advantage = tf.expand_dims(self.advantage, -1) decay_epsilon = tf.train.polynomial_decay( epsilon, self.global_step, max_step, 0.1, power=1.0 ) decay_beta = tf.train.polynomial_decay( beta, self.global_step, max_step, 1e-5, power=1.0 ) value_losses = [] for name, head in value_heads.items(): clipped_value_estimate = self.old_values[name] + tf.clip_by_value( tf.reduce_sum(head, axis=1) - self.old_values[name], -decay_epsilon, decay_epsilon, ) v_opt_a = tf.squared_difference( self.returns_holders[name], tf.reduce_sum(head, axis=1) ) v_opt_b = tf.squared_difference( self.returns_holders[name], clipped_value_estimate ) value_loss = tf.reduce_mean( tf.dynamic_partition(tf.maximum(v_opt_a, v_opt_b), self.mask, 2)[1] ) value_losses.append(value_loss) self.value_loss = tf.reduce_mean(value_losses) r_theta = tf.exp(probs - old_probs) p_opt_a = r_theta * advantage p_opt_b = ( tf.clip_by_value(r_theta, 1.0 - decay_epsilon, 1.0 + decay_epsilon) * advantage ) self.policy_loss = -tf.reduce_mean( tf.dynamic_partition(tf.minimum(p_opt_a, p_opt_b), self.mask, 2)[1] ) # For cleaner stats reporting self.abs_policy_loss = tf.abs(self.policy_loss) self.loss = ( self.policy_loss + 0.5 * self.value_loss - decay_beta * tf.reduce_mean(tf.dynamic_partition(entropy, self.mask, 2)[1]) ) def create_ppo_optimizer(self): self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) self.grads = self.optimizer.compute_gradients(self.loss) self.update_batch = self.optimizer.minimize(self.loss)