from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer import pytest from unittest import mock import os import numpy as np from mlagents.torch_utils import torch, default_device from mlagents.trainers.policy.torch_policy import TorchPolicy from mlagents.trainers.ppo.optimizer_torch import TorchPPOOptimizer from mlagents.trainers.sac.optimizer_torch import TorchSACOptimizer from mlagents.trainers.poca.optimizer_torch import TorchPOCAOptimizer from mlagents.trainers.model_saver.torch_model_saver import TorchModelSaver from mlagents.trainers.settings import ( TrainerSettings, PPOSettings, SACSettings, POCASettings, ) from mlagents.trainers.tests import mock_brain as mb from mlagents.trainers.tests.torch.test_policy import create_policy_mock from mlagents.trainers.torch.utils import ModelUtils def test_register(tmp_path): trainer_params = TrainerSettings() model_saver = TorchModelSaver(trainer_params, tmp_path) opt = mock.Mock(spec=TorchPPOOptimizer) opt.get_modules = mock.Mock(return_value={}) model_saver.register(opt) assert model_saver.policy is None trainer_params = TrainerSettings() policy = create_policy_mock(trainer_params) opt.get_modules = mock.Mock(return_value={}) model_saver.register(policy) assert model_saver.policy is not None def test_load_save_policy(tmp_path): path1 = os.path.join(tmp_path, "runid1") path2 = os.path.join(tmp_path, "runid2") trainer_params = TrainerSettings() policy = create_policy_mock(trainer_params) model_saver = TorchModelSaver(trainer_params, path1) model_saver.register(policy) model_saver.initialize_or_load(policy) policy.set_step(2000) mock_brain_name = "MockBrain" model_saver.save_checkpoint(mock_brain_name, 2000) assert len(os.listdir(tmp_path)) > 0 # Try load from this path model_saver2 = TorchModelSaver(trainer_params, path1, load=True) policy2 = create_policy_mock(trainer_params) model_saver2.register(policy2) model_saver2.initialize_or_load(policy2) _compare_two_policies(policy, policy2) assert policy2.get_current_step() == 2000 # Try initialize from path 1 trainer_params.init_path = path1 model_saver3 = TorchModelSaver(trainer_params, path2) policy3 = create_policy_mock(trainer_params) model_saver3.register(policy3) model_saver3.initialize_or_load(policy3) _compare_two_policies(policy2, policy3) # Assert that the steps are 0. assert policy3.get_current_step() == 0 @pytest.mark.parametrize( "optimizer", [ (TorchPPOOptimizer, PPOSettings), (TorchSACOptimizer, SACSettings), (TorchPOCAOptimizer, POCASettings), ], ids=["ppo", "sac", "poca"], ) def test_load_save_optimizer(tmp_path, optimizer): OptimizerClass, HyperparametersClass = optimizer trainer_settings = TrainerSettings() trainer_settings.hyperparameters = HyperparametersClass() policy = create_policy_mock(trainer_settings, use_discrete=False) optimizer = OptimizerClass(policy, trainer_settings) # save at path 1 path1 = os.path.join(tmp_path, "runid1") model_saver = TorchModelSaver(trainer_settings, path1) model_saver.register(policy) model_saver.register(optimizer) model_saver.initialize_or_load() policy.set_step(2000) model_saver.save_checkpoint("MockBrain", 2000) # create a new optimizer and policy policy2 = create_policy_mock(trainer_settings, use_discrete=False) optimizer2 = OptimizerClass(policy2, trainer_settings) # load weights model_saver2 = TorchModelSaver(trainer_settings, path1, load=True) model_saver2.register(policy2) model_saver2.register(optimizer2) model_saver2.initialize_or_load() # This is to load the optimizers # Compare the two optimizers _compare_two_optimizers(optimizer, optimizer2) # TorchPolicy.evalute() returns log_probs instead of all_log_probs like tf does. # resulting in indeterministic results for testing. # So here use sample_actions instead. def _compare_two_policies(policy1: TorchPolicy, policy2: TorchPolicy) -> None: """ Make sure two policies have the same output for the same input. """ policy1.actor = policy1.actor.to(default_device()) policy2.actor = policy2.actor.to(default_device()) decision_step, _ = mb.create_steps_from_behavior_spec( policy1.behavior_spec, num_agents=1 ) np_obs = decision_step.obs masks = policy1._extract_masks(decision_step) memories = torch.as_tensor( policy1.retrieve_memories(list(decision_step.agent_id)) ).unsqueeze(0) tensor_obs = [ModelUtils.list_to_tensor(obs) for obs in np_obs] with torch.no_grad(): _, log_probs1, _, _ = policy1.sample_actions( tensor_obs, masks=masks, memories=memories ) _, log_probs2, _, _ = policy2.sample_actions( tensor_obs, masks=masks, memories=memories ) np.testing.assert_array_equal( ModelUtils.to_numpy(log_probs1.all_discrete_tensor), ModelUtils.to_numpy(log_probs2.all_discrete_tensor), ) def _compare_two_optimizers(opt1: TorchOptimizer, opt2: TorchOptimizer) -> None: trajectory = mb.make_fake_trajectory( length=10, observation_specs=opt1.policy.behavior_spec.observation_specs, action_spec=opt1.policy.behavior_spec.action_spec, max_step_complete=True, ) with torch.no_grad(): _, opt1_val_out, _ = opt1.get_trajectory_value_estimates( trajectory.to_agentbuffer(), trajectory.next_obs, done=False ) _, opt2_val_out, _ = opt2.get_trajectory_value_estimates( trajectory.to_agentbuffer(), trajectory.next_obs, done=False ) for opt1_val, opt2_val in zip(opt1_val_out.values(), opt2_val_out.values()): np.testing.assert_array_equal(opt1_val, opt2_val) @pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) @pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) @pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) def test_checkpoint_conversion(tmpdir, rnn, visual, discrete): dummy_config = TrainerSettings() model_path = os.path.join(tmpdir, "Mock_Brain") policy = create_policy_mock( dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual ) trainer_params = TrainerSettings() model_saver = TorchModelSaver(trainer_params, model_path) model_saver.register(policy) model_saver.save_checkpoint("Mock_Brain", 100) assert os.path.isfile(model_path + "/Mock_Brain-100.onnx")