from typing import Optional import os def get_num_threads_to_use() -> Optional[int]: """ Gets the number of threads to use. For most problems, 4 is all you need, but for smaller machines, we'd like to scale to less than that. By default, PyTorch uses 1/2 of the available cores. """ num_cpus = _get_num_available_cpus() return max(min(num_cpus // 2, 4), 1) if num_cpus is not None else None def _get_num_available_cpus() -> Optional[int]: """ Returns number of CPUs using cgroups if possible. This accounts for Docker containers that are limited in cores. """ period = _read_in_integer_file("/sys/fs/cgroup/cpu/cpu.cfs_period_us") quota = _read_in_integer_file("/sys/fs/cgroup/cpu/cpu.cfs_quota_us") share = _read_in_integer_file("/sys/fs/cgroup/cpu/cpu.shares") is_kubernetes = os.getenv("KUBERNETES_SERVICE_HOST") is not None if period > 0 and quota > 0: return int(quota // period) elif period > 0 and share > 0 and is_kubernetes: # In kubernetes, each requested CPU is 1024 CPU shares # https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#how-pods-with-resource-limits-are-run return int(share // 1024) else: return os.cpu_count() def _read_in_integer_file(filename: str) -> int: try: with open(filename) as f: return int(f.read().rstrip()) except FileNotFoundError: return -1