import os import tempfile import pytest import mlagents.trainers.tensorflow_to_barracuda as tf2bc from mlagents.trainers.tests.test_nn_policy import create_policy_mock from mlagents.trainers.settings import TrainerSettings from mlagents.tf_utils import tf from mlagents.model_serialization import SerializationSettings, export_policy_model def test_barracuda_converter(): path_prefix = os.path.dirname(os.path.abspath(__file__)) tmpfile = os.path.join( tempfile._get_default_tempdir(), next(tempfile._get_candidate_names()) + ".nn" ) # make sure there are no left-over files if os.path.isfile(tmpfile): os.remove(tmpfile) tf2bc.convert(path_prefix + "/BasicLearning.pb", tmpfile) # test if file exists after conversion assert os.path.isfile(tmpfile) # currently converter produces small output file even if input file is empty # 100 bytes is high enough to prove that conversion was successful assert os.path.getsize(tmpfile) > 100 # cleanup os.remove(tmpfile) @pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) @pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) @pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) def test_policy_conversion(tmpdir, rnn, visual, discrete): tf.reset_default_graph() dummy_config = TrainerSettings() policy = create_policy_mock( dummy_config, use_rnn=rnn, model_path=os.path.join(tmpdir, "test"), use_discrete=discrete, use_visual=visual, ) policy.save_model(1000) settings = SerializationSettings( policy.model_path, os.path.join(tmpdir, policy.brain.brain_name) ) export_policy_model(settings, policy.graph, policy.sess) # These checks taken from test_barracuda_converter assert os.path.isfile(os.path.join(tmpdir, "test.nn")) assert os.path.getsize(os.path.join(tmpdir, "test.nn")) > 100