using System;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Serialization;
namespace MLAgents.Sensors
{
///
/// A base class to support sensor components for raycast-based sensors.
///
public abstract class RayPerceptionSensorComponentBase : SensorComponent
{
[HideInInspector, SerializeField, FormerlySerializedAs("sensorName")]
string m_SensorName = "RayPerceptionSensor";
///
/// The name of the Sensor that this component wraps.
///
public string sensorName
{
get => m_SensorName;
// Restrict the access on the name, since changing it a runtime doesn't re-sort the Agent sensors.
internal set => m_SensorName = value;
}
[SerializeField, FormerlySerializedAs("detectableTags")]
[Tooltip("List of tags in the scene to compare against.")]
List m_DetectableTags;
///
/// List of tags in the scene to compare against.
///
public List detectableTags
{
get => m_DetectableTags;
// Note: can't change at runtime
internal set => m_DetectableTags = value;
}
[HideInInspector, SerializeField, FormerlySerializedAs("raysPerDirection")]
[Range(0, 50)]
[Tooltip("Number of rays to the left and right of center.")]
int m_RaysPerDirection = 3;
///
/// Number of rays to the left and right of center.
///
public int raysPerDirection
{
get => m_RaysPerDirection;
// Note: can't change at runtime
internal set => m_RaysPerDirection = value;
}
[HideInInspector, SerializeField, FormerlySerializedAs("maxRayDegrees")]
[Range(0, 180)]
[Tooltip("Cone size for rays. Using 90 degrees will cast rays to the left and right. " +
"Greater than 90 degrees will go backwards.")]
float m_MaxRayDegrees = 70;
///
/// Cone size for rays. Using 90 degrees will cast rays to the left and right.
/// Greater than 90 degrees will go backwards.
///
public float maxRayDegrees
{
get => m_MaxRayDegrees;
set { m_MaxRayDegrees = value; UpdateSensor(); }
}
[HideInInspector, SerializeField, FormerlySerializedAs("sphereCastRadius")]
[Range(0f, 10f)]
[Tooltip("Radius of sphere to cast. Set to zero for raycasts.")]
float m_SphereCastRadius = 0.5f;
///
/// Radius of sphere to cast. Set to zero for raycasts.
///
public float sphereCastRadius
{
get => m_SphereCastRadius;
set { m_SphereCastRadius = value; UpdateSensor(); }
}
[HideInInspector, SerializeField, FormerlySerializedAs("rayLength")]
[Range(1, 1000)]
[Tooltip("Length of the rays to cast.")]
float m_RayLength = 20f;
///
/// Length of the rays to cast.
///
public float rayLength
{
get => m_RayLength;
set { m_RayLength = value; UpdateSensor(); }
}
[HideInInspector, SerializeField, FormerlySerializedAs("rayLayerMask")]
[Tooltip("Controls which layers the rays can hit.")]
LayerMask m_RayLayerMask = Physics.DefaultRaycastLayers;
///
/// Controls which layers the rays can hit.
///
public LayerMask rayLayerMask
{
get => m_RayLayerMask;
set { m_RayLayerMask = value; UpdateSensor();}
}
[HideInInspector, SerializeField, FormerlySerializedAs("observationStacks")]
[Range(1, 50)]
[Tooltip("Whether to stack previous observations. Using 1 means no previous observations.")]
int m_ObservationStacks = 1;
///
/// Whether to stack previous observations. Using 1 means no previous observations.
///
internal int observationStacks
{
get => m_ObservationStacks;
set => m_ObservationStacks = value; // Note: can't change at runtime
}
///
/// Color to code a ray that hits another object.
///
[HideInInspector]
[SerializeField]
[Header("Debug Gizmos", order = 999)]
internal Color rayHitColor = Color.red;
///
/// Color to code a ray that avoid or misses all other objects.
///
[HideInInspector]
[SerializeField]
internal Color rayMissColor = Color.white;
[NonSerialized]
RayPerceptionSensor m_RaySensor;
///
/// Get the RayPerceptionSensor that was created.
///
public RayPerceptionSensor raySensor
{
get => m_RaySensor;
}
///
/// Returns the for the associated raycast sensor.
///
///
public abstract RayPerceptionCastType GetCastType();
///
/// Returns the amount that the ray start is offset up or down by.
///
///
public virtual float GetStartVerticalOffset()
{
return 0f;
}
///
/// Returns the amount that the ray end is offset up or down by.
///
///
public virtual float GetEndVerticalOffset()
{
return 0f;
}
///
/// Returns an initialized raycast sensor.
///
///
public override ISensor CreateSensor()
{
var rayPerceptionInput = GetRayPerceptionInput();
m_RaySensor = new RayPerceptionSensor(m_SensorName, rayPerceptionInput);
if (observationStacks != 1)
{
var stackingSensor = new StackingSensor(m_RaySensor, observationStacks);
return stackingSensor;
}
return m_RaySensor;
}
///
/// Returns the specific ray angles given the number of rays per direction and the
/// cone size for the rays.
///
/// Number of rays to the left and right of center.
///
/// Cone size for rays. Using 90 degrees will cast rays to the left and right.
/// Greater than 90 degrees will go backwards.
///
///
internal static float[] GetRayAngles(int raysPerDirection, float maxRayDegrees)
{
// Example:
// { 90, 90 - delta, 90 + delta, 90 - 2*delta, 90 + 2*delta }
var anglesOut = new float[2 * raysPerDirection + 1];
var delta = maxRayDegrees / raysPerDirection;
anglesOut[0] = 90f;
for (var i = 0; i < raysPerDirection; i++)
{
anglesOut[2 * i + 1] = 90 - (i + 1) * delta;
anglesOut[2 * i + 2] = 90 + (i + 1) * delta;
}
return anglesOut;
}
///
/// Returns the observation shape for this raycast sensor which depends on the number
/// of tags for detected objects and the number of rays.
///
///
public override int[] GetObservationShape()
{
var numRays = 2 * raysPerDirection + 1;
var numTags = m_DetectableTags?.Count ?? 0;
var obsSize = (numTags + 2) * numRays;
var stacks = observationStacks > 1 ? observationStacks : 1;
return new[] { obsSize * stacks };
}
///
/// Get the RayPerceptionInput that is used by the .
///
///
public RayPerceptionInput GetRayPerceptionInput()
{
var rayAngles = GetRayAngles(raysPerDirection, maxRayDegrees);
var rayPerceptionInput = new RayPerceptionInput();
rayPerceptionInput.rayLength = rayLength;
rayPerceptionInput.detectableTags = detectableTags;
rayPerceptionInput.angles = rayAngles;
rayPerceptionInput.startOffset = GetStartVerticalOffset();
rayPerceptionInput.endOffset = GetEndVerticalOffset();
rayPerceptionInput.castRadius = sphereCastRadius;
rayPerceptionInput.transform = transform;
rayPerceptionInput.castType = GetCastType();
rayPerceptionInput.layerMask = rayLayerMask;
return rayPerceptionInput;
}
internal void UpdateSensor()
{
if (m_RaySensor != null)
{
var rayInput = GetRayPerceptionInput();
m_RaySensor.SetRayPerceptionInput(rayInput);
}
}
void OnDrawGizmosSelected()
{
if (m_RaySensor?.debugDisplayInfo?.rayInfos != null)
{
// If we have cached debug info from the sensor, draw that.
// Draw "old" observations in a lighter color.
// Since the agent may not step every frame, this helps de-emphasize "stale" hit information.
var alpha = Mathf.Pow(.5f, m_RaySensor.debugDisplayInfo.age);
foreach (var rayInfo in m_RaySensor.debugDisplayInfo.rayInfos)
{
DrawRaycastGizmos(rayInfo, alpha);
}
}
else
{
var rayInput = GetRayPerceptionInput();
for (var rayIndex = 0; rayIndex < rayInput.angles.Count; rayIndex++)
{
DebugDisplayInfo.RayInfo debugRay;
RayPerceptionSensor.PerceiveSingleRay(rayInput, rayIndex, out debugRay);
DrawRaycastGizmos(debugRay);
}
}
}
///
/// Draw the debug information from the sensor (if available).
///
void DrawRaycastGizmos(DebugDisplayInfo.RayInfo rayInfo, float alpha = 1.0f)
{
var startPositionWorld = rayInfo.worldStart;
var endPositionWorld = rayInfo.worldEnd;
var rayDirection = endPositionWorld - startPositionWorld;
rayDirection *= rayInfo.rayOutput.hitFraction;
// hit fraction ^2 will shift "far" hits closer to the hit color
var lerpT = rayInfo.rayOutput.hitFraction * rayInfo.rayOutput.hitFraction;
var color = Color.Lerp(rayHitColor, rayMissColor, lerpT);
color.a *= alpha;
Gizmos.color = color;
Gizmos.DrawRay(startPositionWorld, rayDirection);
// Draw the hit point as a sphere. If using rays to cast (0 radius), use a small sphere.
if (rayInfo.rayOutput.hasHit)
{
var hitRadius = Mathf.Max(rayInfo.castRadius, .05f);
Gizmos.DrawWireSphere(startPositionWorld + rayDirection, hitRadius);
}
}
}
}